基于放射学特征的 COVID-19 患者 CT 肺部检查结果自动分类。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-11-20 DOI:10.1088/2057-1976/ad9157
Mahbubunnabi Tamal, Murad Althobaiti, Maryam Alhashim, Maram Alsanea, Tarek M Hegazi, Mohamed Deriche, Abdullah M Alhashem
{"title":"基于放射学特征的 COVID-19 患者 CT 肺部检查结果自动分类。","authors":"Mahbubunnabi Tamal, Murad Althobaiti, Maryam Alhashim, Maram Alsanea, Tarek M Hegazi, Mohamed Deriche, Abdullah M Alhashem","doi":"10.1088/2057-1976/ad9157","DOIUrl":null,"url":null,"abstract":"<p><p><i>Introduction</i>. The lung CT images of COVID-19 patients can be typically characterized by three different findings- Ground Glass Opacity (GGO), consolidation and pleural effusion. GGOs have been shown to precede consolidations and has different heterogeneous appearance. Conventional severity scoring only uses total area of lung involvement ignoring appearance of the effected regions. This study proposes a baseline to select heterogeneity/radiomic features that can distinguish these three pathological lung findings.<i>Methods</i>. Four approaches were implemented to select features from a pool of 44 features. First one is a manual feature selection method. The rest are automatic feature selection methods based on Genetic Algorithm (GA) coupled with (1) K-Nearest-Neighbor (GA-KNN), (2) binary-decision-tree (GA-BDT) and (3) Artificial-Neural-Network (GA-ANN). For the purpose of validation, an ANN was trained using the selected features and tested on a completely independent data set.<i>Results</i>. Manual selection of nine radiomic features was found to provide the most accurate results with the highest sensitivity, specificity and accuracy (85.7% overall accuracy and 0.90 area under receiver operating characteristic curve) followed by GA-BDT, GA-KNN and GA-ANN (accuracy 78%, 77.5% and 76.8%).<i>Conclusion</i>. Manually selected nine radiomic features can be used in accurate severity scoring allowing the clinician to plan for more effective personalized treatment. They can also be useful for monitoring the progression of COVID-19 and response to therapy for clinical trials.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomic features based automatic classification of CT lung findings for COVID-19 patients.\",\"authors\":\"Mahbubunnabi Tamal, Murad Althobaiti, Maryam Alhashim, Maram Alsanea, Tarek M Hegazi, Mohamed Deriche, Abdullah M Alhashem\",\"doi\":\"10.1088/2057-1976/ad9157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Introduction</i>. The lung CT images of COVID-19 patients can be typically characterized by three different findings- Ground Glass Opacity (GGO), consolidation and pleural effusion. GGOs have been shown to precede consolidations and has different heterogeneous appearance. Conventional severity scoring only uses total area of lung involvement ignoring appearance of the effected regions. This study proposes a baseline to select heterogeneity/radiomic features that can distinguish these three pathological lung findings.<i>Methods</i>. Four approaches were implemented to select features from a pool of 44 features. First one is a manual feature selection method. The rest are automatic feature selection methods based on Genetic Algorithm (GA) coupled with (1) K-Nearest-Neighbor (GA-KNN), (2) binary-decision-tree (GA-BDT) and (3) Artificial-Neural-Network (GA-ANN). For the purpose of validation, an ANN was trained using the selected features and tested on a completely independent data set.<i>Results</i>. Manual selection of nine radiomic features was found to provide the most accurate results with the highest sensitivity, specificity and accuracy (85.7% overall accuracy and 0.90 area under receiver operating characteristic curve) followed by GA-BDT, GA-KNN and GA-ANN (accuracy 78%, 77.5% and 76.8%).<i>Conclusion</i>. Manually selected nine radiomic features can be used in accurate severity scoring allowing the clinician to plan for more effective personalized treatment. They can also be useful for monitoring the progression of COVID-19 and response to therapy for clinical trials.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad9157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

简介:COVID-19 患者的肺部 CT 图像通常有三种不同的发现--玻璃样混浊(GGO)、合并症和胸腔积液。GGO 已被证明先于合并症出现,并具有不同的异质性外观。传统的严重程度评分仅使用肺部受累的总面积,而忽略了受累区域的外观。本研究提出了一种选择异质性/放射学特征的基线,以区分这三种肺部病理结果。第一种是手动特征选择方法。其余的是基于遗传算法(GA)的自动特征选择方法:1)K-最近邻(GA-KNN);2)二叉决策树(GA-BDT);3)人工神经网络(GA-ANN)。结果: 发现人工选择九个放射学特征的结果最准确,灵敏度、特异性和准确性都最高(总体准确率为 85.7%,接收者操作特征曲线下面积为 0.90%)。90),其次是 GA-BDT、GA-KNN 和 GA-ANN(准确率分别为 78%、77.5% 和 76.8%)。它们还可用于监测 COVID-19 的进展和临床试验中的治疗反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiomic features based automatic classification of CT lung findings for COVID-19 patients.

Introduction. The lung CT images of COVID-19 patients can be typically characterized by three different findings- Ground Glass Opacity (GGO), consolidation and pleural effusion. GGOs have been shown to precede consolidations and has different heterogeneous appearance. Conventional severity scoring only uses total area of lung involvement ignoring appearance of the effected regions. This study proposes a baseline to select heterogeneity/radiomic features that can distinguish these three pathological lung findings.Methods. Four approaches were implemented to select features from a pool of 44 features. First one is a manual feature selection method. The rest are automatic feature selection methods based on Genetic Algorithm (GA) coupled with (1) K-Nearest-Neighbor (GA-KNN), (2) binary-decision-tree (GA-BDT) and (3) Artificial-Neural-Network (GA-ANN). For the purpose of validation, an ANN was trained using the selected features and tested on a completely independent data set.Results. Manual selection of nine radiomic features was found to provide the most accurate results with the highest sensitivity, specificity and accuracy (85.7% overall accuracy and 0.90 area under receiver operating characteristic curve) followed by GA-BDT, GA-KNN and GA-ANN (accuracy 78%, 77.5% and 76.8%).Conclusion. Manually selected nine radiomic features can be used in accurate severity scoring allowing the clinician to plan for more effective personalized treatment. They can also be useful for monitoring the progression of COVID-19 and response to therapy for clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system. Open-window MSR Design with Active Magnetic Compensation Coil based on COMSOL Multiphysics. A new method to assess the performance of anti-scatter grids in x-ray projection imaging. Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1