用于先进组织工程气管的混合三维生物打印:融合熔融沉积建模(FDM)和自上而下的数字光处理(DLP)。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-11-14 DOI:10.1088/1758-5090/ad92da
Ji Seung Lee, Harry Jung, Olatunji Ajiteru, Ok Joo Lee, Soon Hee Kim, Hae Sang Park, Chan Hum Park
{"title":"用于先进组织工程气管的混合三维生物打印:融合熔融沉积建模(FDM)和自上而下的数字光处理(DLP)。","authors":"Ji Seung Lee, Harry Jung, Olatunji Ajiteru, Ok Joo Lee, Soon Hee Kim, Hae Sang Park, Chan Hum Park","doi":"10.1088/1758-5090/ad92da","DOIUrl":null,"url":null,"abstract":"<p><p>In this present study, we introduce an innovative hybrid 3D bioprinting methodology that integrates fused deposition modeling (FDM) with top-down digital light processing (DLP) for the fabrication of an artificial trachea. Initially, polycaprolactone (PCL) was incorporated using an FDM 3D printer to provide essential mechanical support, replicating the structure of tracheal cartilage. Subsequently, a chondrocyte-laden glycidyl methacrylated silk fibroin (Sil-MA) hydrogel was introduced via top-down DLP into the PCL scaffold (PCL-Sil scaffold). &#xD;The mechanical evaluation of PCL-Sil scaffolds showed that they have greater flexibility than PCL scaffolds, with a higher deformation rate (PCL-Sil scaffolds: 140.9±5.37% vs. PCL scaffolds: 124.3±6.25%) and ability to withstand more force before fracturing (3.860±0.140 N for PCL-Sil scaffolds vs. 2.502±0.126 N for PCL scaffolds, ***P < 0.001). Both types of scaffolds showed similar axial compressive strengths (PCL-Sil scaffolds: 4.276±0.127 MPa vs. PCL scaffolds: 4.291±0.135 MPa). Additionally, PCL-Sil scaffolds supported fibroblast proliferation, indicating good biocompatibility. In vivo testing of PCL-Sil scaffolds in a partial tracheal defect rabbit model demonstrated effective tissue regeneration. The scaffolds were pre-cultured in the omentum for two weeks to promote vascularization before transplantation. Eight weeks after transplantation into the animal, bronchoscopy and histological analysis confirmed that the omentum-cultured PCL-Sil scaffolds facilitated rapid tissue regeneration and maintained the luminal diameter at the anastomosis site without signs of stenosis or inflammation. Validation study to assess the feasibility of our hybrid 3D bioprinting technique showed that structures, not only the trachea but also the vertebral bone-disc and trachea-lung complex, were successfully printed. &#xD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid 3D bioprinting for advanced tissue-engineered trachea: merging fused deposition modeling (FDM) and top-down digital light processing (DLP).\",\"authors\":\"Ji Seung Lee, Harry Jung, Olatunji Ajiteru, Ok Joo Lee, Soon Hee Kim, Hae Sang Park, Chan Hum Park\",\"doi\":\"10.1088/1758-5090/ad92da\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this present study, we introduce an innovative hybrid 3D bioprinting methodology that integrates fused deposition modeling (FDM) with top-down digital light processing (DLP) for the fabrication of an artificial trachea. Initially, polycaprolactone (PCL) was incorporated using an FDM 3D printer to provide essential mechanical support, replicating the structure of tracheal cartilage. Subsequently, a chondrocyte-laden glycidyl methacrylated silk fibroin (Sil-MA) hydrogel was introduced via top-down DLP into the PCL scaffold (PCL-Sil scaffold). &#xD;The mechanical evaluation of PCL-Sil scaffolds showed that they have greater flexibility than PCL scaffolds, with a higher deformation rate (PCL-Sil scaffolds: 140.9±5.37% vs. PCL scaffolds: 124.3±6.25%) and ability to withstand more force before fracturing (3.860±0.140 N for PCL-Sil scaffolds vs. 2.502±0.126 N for PCL scaffolds, ***P < 0.001). Both types of scaffolds showed similar axial compressive strengths (PCL-Sil scaffolds: 4.276±0.127 MPa vs. PCL scaffolds: 4.291±0.135 MPa). Additionally, PCL-Sil scaffolds supported fibroblast proliferation, indicating good biocompatibility. In vivo testing of PCL-Sil scaffolds in a partial tracheal defect rabbit model demonstrated effective tissue regeneration. The scaffolds were pre-cultured in the omentum for two weeks to promote vascularization before transplantation. Eight weeks after transplantation into the animal, bronchoscopy and histological analysis confirmed that the omentum-cultured PCL-Sil scaffolds facilitated rapid tissue regeneration and maintained the luminal diameter at the anastomosis site without signs of stenosis or inflammation. Validation study to assess the feasibility of our hybrid 3D bioprinting technique showed that structures, not only the trachea but also the vertebral bone-disc and trachea-lung complex, were successfully printed. &#xD.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad92da\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad92da","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了一种创新的混合三维生物打印方法,该方法将熔融沉积建模(FDM)与自上而下的数字光处理(DLP)相结合,用于制造人工气管。首先,使用 FDM 三维打印机加入聚己内酯(PCL),以提供基本的机械支撑,复制气管软骨的结构。随后,通过自上而下的 DLP 将含有软骨细胞的缩水甘油甲基丙烯酸酯化丝纤维素(Sil-MA)水凝胶引入 PCL 支架(PCL-Sil 支架)。9±5.37% vs. PCL支架:124.3±6.25%),并且在断裂前能够承受更大的力量(PCL-Sil支架为3.860±0.140 N vs. PCL支架为2.502±0.126 N,***P < 0.001)。两种支架显示出相似的轴向抗压强度(PCL-硅支架:4.276±0.127 MPa vs. PCL支架:4.291±0.135 MPa)。此外,PCL-硅支架还支持成纤维细胞增殖,表明其具有良好的生物相容性。在部分气管缺损兔模型中对 PCL-Sil 支架进行的体内测试表明,该支架能有效促进组织再生。在移植前,将支架在网膜中预培养两周,以促进血管生成。移植到动物体内八周后,支气管镜检查和组织学分析证实,网膜培养的 PCL-Sil 支架促进了组织的快速再生,并保持了吻合部位的管腔直径,没有出现狭窄或炎症迹象。为评估我们的混合三维生物打印技术的可行性而进行的验证研究表明,不仅气管,而且椎骨-圆盘和气管-肺复合体等结构都被成功打印出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid 3D bioprinting for advanced tissue-engineered trachea: merging fused deposition modeling (FDM) and top-down digital light processing (DLP).

In this present study, we introduce an innovative hybrid 3D bioprinting methodology that integrates fused deposition modeling (FDM) with top-down digital light processing (DLP) for the fabrication of an artificial trachea. Initially, polycaprolactone (PCL) was incorporated using an FDM 3D printer to provide essential mechanical support, replicating the structure of tracheal cartilage. Subsequently, a chondrocyte-laden glycidyl methacrylated silk fibroin (Sil-MA) hydrogel was introduced via top-down DLP into the PCL scaffold (PCL-Sil scaffold). The mechanical evaluation of PCL-Sil scaffolds showed that they have greater flexibility than PCL scaffolds, with a higher deformation rate (PCL-Sil scaffolds: 140.9±5.37% vs. PCL scaffolds: 124.3±6.25%) and ability to withstand more force before fracturing (3.860±0.140 N for PCL-Sil scaffolds vs. 2.502±0.126 N for PCL scaffolds, ***P < 0.001). Both types of scaffolds showed similar axial compressive strengths (PCL-Sil scaffolds: 4.276±0.127 MPa vs. PCL scaffolds: 4.291±0.135 MPa). Additionally, PCL-Sil scaffolds supported fibroblast proliferation, indicating good biocompatibility. In vivo testing of PCL-Sil scaffolds in a partial tracheal defect rabbit model demonstrated effective tissue regeneration. The scaffolds were pre-cultured in the omentum for two weeks to promote vascularization before transplantation. Eight weeks after transplantation into the animal, bronchoscopy and histological analysis confirmed that the omentum-cultured PCL-Sil scaffolds facilitated rapid tissue regeneration and maintained the luminal diameter at the anastomosis site without signs of stenosis or inflammation. Validation study to assess the feasibility of our hybrid 3D bioprinting technique showed that structures, not only the trachea but also the vertebral bone-disc and trachea-lung complex, were successfully printed. .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Automated production of nerve repair constructs containing endothelial cell tube-like structures. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Bioprinting a resilient and transparent cornea stroma equivalent: harnessing dual crosslinking strategy with decellularized cornea matrix and silk fibroin hybrid. Narrative review of proximal tubular epithelial cellin-vitroco-culture models. Novel in situ and rapid self-gelation recombinant collagen-like protein hydrogel for wound regeneration: mediated by metal coordination crosslinking and reinforced by electro-oxidized tea polyphenols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1