Wei Zhang, Yaxin Xu, Xiaoying Zheng, Juan Shen, Yuanyuan Li
{"title":"基于加权距离惩罚的套索约束正则化高斯图形模型识别细胞类型。","authors":"Wei Zhang, Yaxin Xu, Xiaoying Zheng, Juan Shen, Yuanyuan Li","doi":"10.1093/bib/bbae572","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) technology is one of the most cost-effective and efficacious methods for revealing cellular heterogeneity and diversity. Precise identification of cell types is essential for establishing a robust foundation for downstream analyses and is a prerequisite for understanding heterogeneous mechanisms. However, the accuracy of existing methods warrants improvement, and highly accurate methods often impose stringent equipment requirements. Moreover, most unsupervised learning-based approaches are constrained by the need to input the number of cell types a prior, which limits their widespread application. In this paper, we propose a novel algorithm framework named WLGG. Initially, to capture the underlying nonlinear information, we introduce a weighted distance penalty term utilizing the Gaussian kernel function, which maps data from a low-dimensional nonlinear space to a high-dimensional linear space. We subsequently impose a Lasso constraint on the regularized Gaussian graphical model to enhance its ability to capture linear data characteristics. Additionally, we utilize the Eigengap strategy to predict the number of cell types and obtain predicted labels via spectral clustering. The experimental results on 14 test datasets demonstrate the superior clustering accuracy of the WLGG algorithm over 16 alternative methods. Furthermore, downstream analysis, including marker gene identification, pseudotime inference, and functional enrichment analysis based on the similarity matrix and predicted labels from the WLGG algorithm, substantiates the reliability of WLGG and offers valuable insights into biological dynamic biological processes and regulatory mechanisms.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying cell types by lasso-constraint regularized Gaussian graphical model based on weighted distance penalty.\",\"authors\":\"Wei Zhang, Yaxin Xu, Xiaoying Zheng, Juan Shen, Yuanyuan Li\",\"doi\":\"10.1093/bib/bbae572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) technology is one of the most cost-effective and efficacious methods for revealing cellular heterogeneity and diversity. Precise identification of cell types is essential for establishing a robust foundation for downstream analyses and is a prerequisite for understanding heterogeneous mechanisms. However, the accuracy of existing methods warrants improvement, and highly accurate methods often impose stringent equipment requirements. Moreover, most unsupervised learning-based approaches are constrained by the need to input the number of cell types a prior, which limits their widespread application. In this paper, we propose a novel algorithm framework named WLGG. Initially, to capture the underlying nonlinear information, we introduce a weighted distance penalty term utilizing the Gaussian kernel function, which maps data from a low-dimensional nonlinear space to a high-dimensional linear space. We subsequently impose a Lasso constraint on the regularized Gaussian graphical model to enhance its ability to capture linear data characteristics. Additionally, we utilize the Eigengap strategy to predict the number of cell types and obtain predicted labels via spectral clustering. The experimental results on 14 test datasets demonstrate the superior clustering accuracy of the WLGG algorithm over 16 alternative methods. Furthermore, downstream analysis, including marker gene identification, pseudotime inference, and functional enrichment analysis based on the similarity matrix and predicted labels from the WLGG algorithm, substantiates the reliability of WLGG and offers valuable insights into biological dynamic biological processes and regulatory mechanisms.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae572\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae572","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identifying cell types by lasso-constraint regularized Gaussian graphical model based on weighted distance penalty.
Single-cell RNA sequencing (scRNA-seq) technology is one of the most cost-effective and efficacious methods for revealing cellular heterogeneity and diversity. Precise identification of cell types is essential for establishing a robust foundation for downstream analyses and is a prerequisite for understanding heterogeneous mechanisms. However, the accuracy of existing methods warrants improvement, and highly accurate methods often impose stringent equipment requirements. Moreover, most unsupervised learning-based approaches are constrained by the need to input the number of cell types a prior, which limits their widespread application. In this paper, we propose a novel algorithm framework named WLGG. Initially, to capture the underlying nonlinear information, we introduce a weighted distance penalty term utilizing the Gaussian kernel function, which maps data from a low-dimensional nonlinear space to a high-dimensional linear space. We subsequently impose a Lasso constraint on the regularized Gaussian graphical model to enhance its ability to capture linear data characteristics. Additionally, we utilize the Eigengap strategy to predict the number of cell types and obtain predicted labels via spectral clustering. The experimental results on 14 test datasets demonstrate the superior clustering accuracy of the WLGG algorithm over 16 alternative methods. Furthermore, downstream analysis, including marker gene identification, pseudotime inference, and functional enrichment analysis based on the similarity matrix and predicted labels from the WLGG algorithm, substantiates the reliability of WLGG and offers valuable insights into biological dynamic biological processes and regulatory mechanisms.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.