{"title":"scTCA:用于scDNA-seq数据归因和去噪的混合变换器-CNN架构。","authors":"Zhenhua Yu, Furui Liu, Yang Li","doi":"10.1093/bib/bbae577","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551055/pdf/","citationCount":"0","resultStr":"{\"title\":\"scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.\",\"authors\":\"Zhenhua Yu, Furui Liu, Yang Li\",\"doi\":\"10.1093/bib/bbae577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae577\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae577","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.
Single-cell DNA sequencing (scDNA-seq) has been widely used to unmask tumor copy number alterations (CNAs) at single-cell resolution. Despite that arm-level CNAs can be accurately detected from single-cell read counts, it is difficult to precisely identify focal CNAs as the read counts are featured with high dimensionality, high sparsity and low signal-to-noise ratio. This gives rise to a desperate demand for reconstructing high-quality scDNA-seq data. We develop a new method called scTCA for imputation and denoising of single-cell read counts, thus aiding in downstream analysis of both arm-level and focal CNAs. scTCA employs hybrid Transformer-CNN architectures to identify local and non-local correlations between genes for precise recovery of the read counts. Unlike conventional Transformers, the Transformer block in scTCA is a two-stage attention module containing a stepwise self-attention layer and a window Transformer, and can efficiently deal with the high-dimensional read counts data. We showcase the superior performance of scTCA through comparison with the state-of-the-arts on both synthetic and real datasets. The results indicate it is highly effective in imputation and denoising of scDNA-seq data.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.