{"title":"无光催化剂光促进碳水化合物合成和改性。","authors":"Jing Wang , Fan Zhou , Yuping Xu , Lei Zhang","doi":"10.1016/j.carres.2024.109304","DOIUrl":null,"url":null,"abstract":"<div><div>Photoredox catalysis has recently emerged as a powerful approach for preparing oligosaccharides because it uses mild conditions, is compatible with partially or completely unprotected carbohydrate substrates, and exhibits impressive regio‐ and stereo‐selectivity and high functional group tolerance. However, most catalytic photoredox reactions require an external photocatalyst (organic dye or expensive transition-metal complex) to deliver key glycosyl radicals. Several photocatalyst-free photocatalytic reactions that avoid the use of expensive metal salts or organic-dye additives have received significant attention. In this review, we highlight the most recent developments in photocatalyst-free light-promoted carbohydrate synthesis and modification, which is expected to inspire broad interest in further innovations in the green synthesis of saccharides.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"546 ","pages":"Article 109304"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalyst-free light-promoted carbohydrate synthesis and modification\",\"authors\":\"Jing Wang , Fan Zhou , Yuping Xu , Lei Zhang\",\"doi\":\"10.1016/j.carres.2024.109304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photoredox catalysis has recently emerged as a powerful approach for preparing oligosaccharides because it uses mild conditions, is compatible with partially or completely unprotected carbohydrate substrates, and exhibits impressive regio‐ and stereo‐selectivity and high functional group tolerance. However, most catalytic photoredox reactions require an external photocatalyst (organic dye or expensive transition-metal complex) to deliver key glycosyl radicals. Several photocatalyst-free photocatalytic reactions that avoid the use of expensive metal salts or organic-dye additives have received significant attention. In this review, we highlight the most recent developments in photocatalyst-free light-promoted carbohydrate synthesis and modification, which is expected to inspire broad interest in further innovations in the green synthesis of saccharides.</div></div>\",\"PeriodicalId\":9415,\"journal\":{\"name\":\"Carbohydrate Research\",\"volume\":\"546 \",\"pages\":\"Article 109304\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008621524002830\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002830","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Photocatalyst-free light-promoted carbohydrate synthesis and modification
Photoredox catalysis has recently emerged as a powerful approach for preparing oligosaccharides because it uses mild conditions, is compatible with partially or completely unprotected carbohydrate substrates, and exhibits impressive regio‐ and stereo‐selectivity and high functional group tolerance. However, most catalytic photoredox reactions require an external photocatalyst (organic dye or expensive transition-metal complex) to deliver key glycosyl radicals. Several photocatalyst-free photocatalytic reactions that avoid the use of expensive metal salts or organic-dye additives have received significant attention. In this review, we highlight the most recent developments in photocatalyst-free light-promoted carbohydrate synthesis and modification, which is expected to inspire broad interest in further innovations in the green synthesis of saccharides.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".