Guillaume Etter, Suzanne van der Veldt, Coralie-Anne Mosser, Michael E Hasselmo, Sylvain Williams
{"title":"在海马-隔膜回路中,白痴表象受感官输入的可用性和任务要求的调节。","authors":"Guillaume Etter, Suzanne van der Veldt, Coralie-Anne Mosser, Michael E Hasselmo, Sylvain Williams","doi":"10.1016/j.celrep.2024.114980","DOIUrl":null,"url":null,"abstract":"<p><p>The hippocampus is a higher-order brain structure responsible for encoding new episodic memories and predicting future outcomes. In the absence of external stimuli, neurons in the hippocampus track elapsed time, distance traveled, and other idiothetic variables. To this day, the exact determinants of idiothetic representations during free navigation remain unclear. Here, we developed unsupervised approaches to extract population and single-cell properties of more than 30,000 CA1 pyramidal neurons in freely moving mice. We find that spatiotemporal representations are composed of a mixture of idiothetic and allocentric information, the balance of which is dictated by task demand and environmental conditions. Additionally, a subset of CA1 pyramidal neurons encodes the spatiotemporal distance to rewards. Finally, distance and time information is integrated postsynaptically in the lateral septum, indicating that these high-level representations are effectively integrated in downstream neurons.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114980"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idiothetic representations are modulated by availability of sensory inputs and task demands in the hippocampal-septal circuit.\",\"authors\":\"Guillaume Etter, Suzanne van der Veldt, Coralie-Anne Mosser, Michael E Hasselmo, Sylvain Williams\",\"doi\":\"10.1016/j.celrep.2024.114980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hippocampus is a higher-order brain structure responsible for encoding new episodic memories and predicting future outcomes. In the absence of external stimuli, neurons in the hippocampus track elapsed time, distance traveled, and other idiothetic variables. To this day, the exact determinants of idiothetic representations during free navigation remain unclear. Here, we developed unsupervised approaches to extract population and single-cell properties of more than 30,000 CA1 pyramidal neurons in freely moving mice. We find that spatiotemporal representations are composed of a mixture of idiothetic and allocentric information, the balance of which is dictated by task demand and environmental conditions. Additionally, a subset of CA1 pyramidal neurons encodes the spatiotemporal distance to rewards. Finally, distance and time information is integrated postsynaptically in the lateral septum, indicating that these high-level representations are effectively integrated in downstream neurons.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"43 11\",\"pages\":\"114980\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114980\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114980","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Idiothetic representations are modulated by availability of sensory inputs and task demands in the hippocampal-septal circuit.
The hippocampus is a higher-order brain structure responsible for encoding new episodic memories and predicting future outcomes. In the absence of external stimuli, neurons in the hippocampus track elapsed time, distance traveled, and other idiothetic variables. To this day, the exact determinants of idiothetic representations during free navigation remain unclear. Here, we developed unsupervised approaches to extract population and single-cell properties of more than 30,000 CA1 pyramidal neurons in freely moving mice. We find that spatiotemporal representations are composed of a mixture of idiothetic and allocentric information, the balance of which is dictated by task demand and environmental conditions. Additionally, a subset of CA1 pyramidal neurons encodes the spatiotemporal distance to rewards. Finally, distance and time information is integrated postsynaptically in the lateral septum, indicating that these high-level representations are effectively integrated in downstream neurons.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.