特异性卵黄抗体对鳜鱼神经坏死病毒感染的保护作用

IF 4.1 2区 农林科学 Q1 FISHERIES Fish & shellfish immunology Pub Date : 2024-11-09 DOI:10.1016/j.fsi.2024.109996
Zengjian Liang , Yunshang Ning , Jinqiao Cao , Shijia Liu , Xia Liang , Xiaomei Peng , Youhua Huang , Jingguang Wei , Sumei Xiao , Qiwei Qin , Sheng Zhou
{"title":"特异性卵黄抗体对鳜鱼神经坏死病毒感染的保护作用","authors":"Zengjian Liang ,&nbsp;Yunshang Ning ,&nbsp;Jinqiao Cao ,&nbsp;Shijia Liu ,&nbsp;Xia Liang ,&nbsp;Xiaomei Peng ,&nbsp;Youhua Huang ,&nbsp;Jingguang Wei ,&nbsp;Sumei Xiao ,&nbsp;Qiwei Qin ,&nbsp;Sheng Zhou","doi":"10.1016/j.fsi.2024.109996","DOIUrl":null,"url":null,"abstract":"<div><div>Nervous necrosis virus (NNV), a member of the Nodavirus genus, is a highly contagious disease that is found all over the world. As of right now, there aren't many reliable commercial vaccines available to combat this infection. In a previous study, we isolated a Mandarin fish (<em>Siniperca chuatsi</em>)-derived NNV strain, tentatively named MFNNV. By immunizing hens with MFNNV recombinant capsid protein (CP), this study produced high-purity anti-MFNNV yolk antibodies. According to the ELISA results, the purified anti-MFNNV IgY titer peaked at week 8 after the first vaccination; western blotting and indirect immunofluorescence results showed that IgY could act as a primary antibody to specifically recognize recombinant CP and virus particles. At the cellular level, specific IgY significantly reduced the appearance of vacuolated cytopathic effect in GS cells after incubation with an equal volume of virus compared with non-specific IgY. Mandarin fish was fed diets supplemented with anti-MFNNV IgY or non-specific IgY at 33 % (w/w) for 7 days prior to artificial infection with MFNNV. On the 14th day of artificial infection with MFNNV, the mortality rate was 53.3 % in the specific group and 83.3 % in the nonspecific group, and the relative protection rate of the specific IgY group was about 36 % compared with that of the nonspecific IgY group. In histopathological analysis, vacuolizing lesions were observed in the brain tissues of Mandarin fish in the non-specific group, whereas only slight vacuolization was observed in the brain tissues of the specific group. Further analysis revealed that compared with the non-specific group, the MFNNV-CP gene expression in the eyes as well as the brain of Mandarin fish in the specific group showed a significant decrease, and the mRNA expression levels of immune-related factors, such as TNF-α, IFN-h, IL-1, IL-8, Mx proteins, and IgM in the spleen, liver, kidney, and hindgut tissues of the specific group also showed a decrease of varying degrees, suggesting that oral administration of specific IgY could neutralize virus and reduce the immune responses as well as tissue pathological damage induced by the Nervous necrosis virus. Consequently, we suggested that IgY could protect Mandarin fish from MFNNV infection by acting as a passive immunological measure.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"155 ","pages":"Article 109996"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The protective effect of specific yolk antibody against nervous necrosis virus infection in Mandarin fish(Siniperca chuatsi)\",\"authors\":\"Zengjian Liang ,&nbsp;Yunshang Ning ,&nbsp;Jinqiao Cao ,&nbsp;Shijia Liu ,&nbsp;Xia Liang ,&nbsp;Xiaomei Peng ,&nbsp;Youhua Huang ,&nbsp;Jingguang Wei ,&nbsp;Sumei Xiao ,&nbsp;Qiwei Qin ,&nbsp;Sheng Zhou\",\"doi\":\"10.1016/j.fsi.2024.109996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nervous necrosis virus (NNV), a member of the Nodavirus genus, is a highly contagious disease that is found all over the world. As of right now, there aren't many reliable commercial vaccines available to combat this infection. In a previous study, we isolated a Mandarin fish (<em>Siniperca chuatsi</em>)-derived NNV strain, tentatively named MFNNV. By immunizing hens with MFNNV recombinant capsid protein (CP), this study produced high-purity anti-MFNNV yolk antibodies. According to the ELISA results, the purified anti-MFNNV IgY titer peaked at week 8 after the first vaccination; western blotting and indirect immunofluorescence results showed that IgY could act as a primary antibody to specifically recognize recombinant CP and virus particles. At the cellular level, specific IgY significantly reduced the appearance of vacuolated cytopathic effect in GS cells after incubation with an equal volume of virus compared with non-specific IgY. Mandarin fish was fed diets supplemented with anti-MFNNV IgY or non-specific IgY at 33 % (w/w) for 7 days prior to artificial infection with MFNNV. On the 14th day of artificial infection with MFNNV, the mortality rate was 53.3 % in the specific group and 83.3 % in the nonspecific group, and the relative protection rate of the specific IgY group was about 36 % compared with that of the nonspecific IgY group. In histopathological analysis, vacuolizing lesions were observed in the brain tissues of Mandarin fish in the non-specific group, whereas only slight vacuolization was observed in the brain tissues of the specific group. Further analysis revealed that compared with the non-specific group, the MFNNV-CP gene expression in the eyes as well as the brain of Mandarin fish in the specific group showed a significant decrease, and the mRNA expression levels of immune-related factors, such as TNF-α, IFN-h, IL-1, IL-8, Mx proteins, and IgM in the spleen, liver, kidney, and hindgut tissues of the specific group also showed a decrease of varying degrees, suggesting that oral administration of specific IgY could neutralize virus and reduce the immune responses as well as tissue pathological damage induced by the Nervous necrosis virus. Consequently, we suggested that IgY could protect Mandarin fish from MFNNV infection by acting as a passive immunological measure.</div></div>\",\"PeriodicalId\":12127,\"journal\":{\"name\":\"Fish & shellfish immunology\",\"volume\":\"155 \",\"pages\":\"Article 109996\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish & shellfish immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050464824006417\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824006417","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

神经坏死病毒(NNV)是诺达病毒属的一种成员,是一种遍布全球的高度传染性疾病。到目前为止,还没有多少可靠的商业疫苗可用于抗击这种感染。在之前的一项研究中,我们分离出了一种由鳜鱼(Siniperca chuatsi)衍生的 NNV 病毒株,并将其暂定名为 MFNNV。通过用 MFNNV 重组囊壳蛋白(CP)免疫母鸡,本研究产生了高纯度的抗 MFNNV 卵黄抗体。ELISA结果显示,纯化的抗MFNNV IgY滴度在首次免疫后第8周达到峰值;Western印迹和间接免疫荧光结果显示,IgY可作为特异性识别重组CP和病毒颗粒的第一抗体。在细胞水平上,与非特异性 IgY 相比,特异性 IgY 能显著减少 GS 细胞在与等体积病毒孵育后出现的空泡细胞病理效应。在鳜鱼人工感染 MFNNV 之前,喂食添加 33%(重量/重量)抗 MFNNV IgY 或非特异性 IgY 的饲料 7 天。在人工感染 MFNNV 的第 14 天,特异性组的死亡率为 53.3%,非特异性组为 83.3%,特异性 IgY 组的相对保护率约为非特异性 IgY 组的 36%。在组织病理学分析中,非特异性组的鳜鱼脑组织中观察到空泡化病变,而特异性组的脑组织中仅观察到轻微的空泡化。进一步分析发现,与非特异性组相比,特异性组鳜鱼眼部和脑部的 MFNNV-CP 基因表达量显著下降,免疫相关因子,如 TNF-α、IFN-h、IL-1、IL-8、Mx 蛋白等的 mRNA 表达水平也显著下降、这表明口服特异性 IgY 可中和病毒,减轻神经坏死病毒引起的免疫反应和组织病理损伤。因此,我们认为 IgY 可作为一种被动免疫措施,保护鳜鱼免受 MFNNV 感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The protective effect of specific yolk antibody against nervous necrosis virus infection in Mandarin fish(Siniperca chuatsi)
Nervous necrosis virus (NNV), a member of the Nodavirus genus, is a highly contagious disease that is found all over the world. As of right now, there aren't many reliable commercial vaccines available to combat this infection. In a previous study, we isolated a Mandarin fish (Siniperca chuatsi)-derived NNV strain, tentatively named MFNNV. By immunizing hens with MFNNV recombinant capsid protein (CP), this study produced high-purity anti-MFNNV yolk antibodies. According to the ELISA results, the purified anti-MFNNV IgY titer peaked at week 8 after the first vaccination; western blotting and indirect immunofluorescence results showed that IgY could act as a primary antibody to specifically recognize recombinant CP and virus particles. At the cellular level, specific IgY significantly reduced the appearance of vacuolated cytopathic effect in GS cells after incubation with an equal volume of virus compared with non-specific IgY. Mandarin fish was fed diets supplemented with anti-MFNNV IgY or non-specific IgY at 33 % (w/w) for 7 days prior to artificial infection with MFNNV. On the 14th day of artificial infection with MFNNV, the mortality rate was 53.3 % in the specific group and 83.3 % in the nonspecific group, and the relative protection rate of the specific IgY group was about 36 % compared with that of the nonspecific IgY group. In histopathological analysis, vacuolizing lesions were observed in the brain tissues of Mandarin fish in the non-specific group, whereas only slight vacuolization was observed in the brain tissues of the specific group. Further analysis revealed that compared with the non-specific group, the MFNNV-CP gene expression in the eyes as well as the brain of Mandarin fish in the specific group showed a significant decrease, and the mRNA expression levels of immune-related factors, such as TNF-α, IFN-h, IL-1, IL-8, Mx proteins, and IgM in the spleen, liver, kidney, and hindgut tissues of the specific group also showed a decrease of varying degrees, suggesting that oral administration of specific IgY could neutralize virus and reduce the immune responses as well as tissue pathological damage induced by the Nervous necrosis virus. Consequently, we suggested that IgY could protect Mandarin fish from MFNNV infection by acting as a passive immunological measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish & shellfish immunology
Fish & shellfish immunology 农林科学-海洋与淡水生物学
CiteScore
7.50
自引率
19.10%
发文量
750
审稿时长
68 days
期刊介绍: Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.
期刊最新文献
Regulation mechanism of oxidative status, immunity and apoptosis induced by hypoxia and heat exposure via PI3K/Akt signaling pathway in Megalobrama amblycephala. A novel C-type lectin, perlucin, from the small abalone, Haliotis diversicolor involved in the innate immune defense against Vibrio harveyi infection. Survival, serum biochemical parameters, hepatic antioxidant status, and gene expression of three Nile tilapia strains under pathogenic Streptococcus agalactiae challenge. A novel perlucin with immune regulatory functions protects Litopenaeus vannamei against Vibrio parahaemolyticus infection. Host-intestinal microbiota interactions in Edwardsiella piscicida-induced lethal enteritis in big-belly seahorses: novel insights into the role of Carbohydrate-Active enzymes and host transcriptional responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1