深度学习增强对比对中风 CT 血管造影诊断准确性的影响。

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Pub Date : 2024-10-28 DOI:10.1016/j.ejrad.2024.111808
Sebastian Steinmetz , Mario Alberto Abello Mercado , Sebastian Altmann , Antoine Sanner , Andrea Kronfeld , Marius Frenzel , Dongok Kim , Sergiu Groppa , Timo Uphaus , Marc A. Brockmann , Ahmed E. Othman
{"title":"深度学习增强对比对中风 CT 血管造影诊断准确性的影响。","authors":"Sebastian Steinmetz ,&nbsp;Mario Alberto Abello Mercado ,&nbsp;Sebastian Altmann ,&nbsp;Antoine Sanner ,&nbsp;Andrea Kronfeld ,&nbsp;Marius Frenzel ,&nbsp;Dongok Kim ,&nbsp;Sergiu Groppa ,&nbsp;Timo Uphaus ,&nbsp;Marc A. Brockmann ,&nbsp;Ahmed E. Othman","doi":"10.1016/j.ejrad.2024.111808","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke.</div></div><div><h3>Methods</h3><div>This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as &lt; 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity.</div></div><div><h3>Results</h3><div>102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p &lt; 0.001) and qualitative image analysis (all items p &lt; 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p &lt; 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %].</div></div><div><h3>Conclusions</h3><div>Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"181 ","pages":"Article 111808"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of deep Learning-enhanced contrast on diagnostic accuracy in stroke CT angiography\",\"authors\":\"Sebastian Steinmetz ,&nbsp;Mario Alberto Abello Mercado ,&nbsp;Sebastian Altmann ,&nbsp;Antoine Sanner ,&nbsp;Andrea Kronfeld ,&nbsp;Marius Frenzel ,&nbsp;Dongok Kim ,&nbsp;Sergiu Groppa ,&nbsp;Timo Uphaus ,&nbsp;Marc A. Brockmann ,&nbsp;Ahmed E. Othman\",\"doi\":\"10.1016/j.ejrad.2024.111808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke.</div></div><div><h3>Methods</h3><div>This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as &lt; 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity.</div></div><div><h3>Results</h3><div>102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p &lt; 0.001) and qualitative image analysis (all items p &lt; 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p &lt; 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %].</div></div><div><h3>Conclusions</h3><div>Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"181 \",\"pages\":\"Article 111808\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X24005242\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X24005242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究深度学习增强对比度对疑似中风患者对比度差的 CT 血管造影的图像质量和诊断准确性的影响:这项回顾性单中心研究纳入了 102 名在 2021 年 1 月至 2022 年 12 月期间因疑似中风而接受 CT 成像检查的连续患者,包括全脑容积灌注 CT(VPCT),特别是对比度差的 CT 血管造影(定义为 结果:102 名患者(平均年龄为 65 岁,男性)接受了评估:102 名患者接受了评估(平均年龄 69 ± 13 岁;70 名男性)。DLe-CTA在定量(所有项目的P)方面优于c-CTA:深度学习增强对比度可改善图像质量,提高对比度差的 CTA 检测血管闭塞的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of deep Learning-enhanced contrast on diagnostic accuracy in stroke CT angiography

Purpose

To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke.

Methods

This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as < 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity.

Results

102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p < 0.001) and qualitative image analysis (all items p < 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p < 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %].

Conclusions

Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
期刊最新文献
Multilingual feasibility of GPT-4o for automated Voice-to-Text CT and MRI report transcription. Predicting functional outcome after open lumbar fusion surgery: A retrospective multicenter cohort study ECG, clinical and novel CT-imaging predictors of necessary pacemaker implantation after transfemoral aortic valve replacement In-vivo cerebral artery pulsation assessment with Dynamic computed tomography angiography Diagnostic performance of Photon-counting CT angiography in peripheral artery disease compared to DSA as gold standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1