Sebastian Steinmetz , Mario Alberto Abello Mercado , Sebastian Altmann , Antoine Sanner , Andrea Kronfeld , Marius Frenzel , Dongok Kim , Sergiu Groppa , Timo Uphaus , Marc A. Brockmann , Ahmed E. Othman
{"title":"深度学习增强对比对中风 CT 血管造影诊断准确性的影响。","authors":"Sebastian Steinmetz , Mario Alberto Abello Mercado , Sebastian Altmann , Antoine Sanner , Andrea Kronfeld , Marius Frenzel , Dongok Kim , Sergiu Groppa , Timo Uphaus , Marc A. Brockmann , Ahmed E. Othman","doi":"10.1016/j.ejrad.2024.111808","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke.</div></div><div><h3>Methods</h3><div>This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as < 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity.</div></div><div><h3>Results</h3><div>102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p < 0.001) and qualitative image analysis (all items p < 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p < 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %].</div></div><div><h3>Conclusions</h3><div>Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"181 ","pages":"Article 111808"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of deep Learning-enhanced contrast on diagnostic accuracy in stroke CT angiography\",\"authors\":\"Sebastian Steinmetz , Mario Alberto Abello Mercado , Sebastian Altmann , Antoine Sanner , Andrea Kronfeld , Marius Frenzel , Dongok Kim , Sergiu Groppa , Timo Uphaus , Marc A. Brockmann , Ahmed E. Othman\",\"doi\":\"10.1016/j.ejrad.2024.111808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke.</div></div><div><h3>Methods</h3><div>This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as < 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity.</div></div><div><h3>Results</h3><div>102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p < 0.001) and qualitative image analysis (all items p < 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p < 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %].</div></div><div><h3>Conclusions</h3><div>Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"181 \",\"pages\":\"Article 111808\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X24005242\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X24005242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Impact of deep Learning-enhanced contrast on diagnostic accuracy in stroke CT angiography
Purpose
To examine the impact of deep learning-augmented contrast enhancement on image quality and diagnostic accuracy of poorly contrasted CT angiography in patients with suspected stroke.
Methods
This retrospective single-centre study included 102 consecutive patients who underwent CT imaging for suspected stroke between 01/2021 and 12/2022, including whole brain volume perfusion CT (VPCT) and, specifically, a poorly contrasted CT angiography (defined as < 350HU in the proximal MCA). CT angiography imaging data was reconstructed using i.) an iterative reconstruction kernel (conventional CTA, c-CTA) as well as ii.) an iodine-based contrast boosting deep learning model (Deep Learning-enhanced CTA, DLe-CTA). For quantitative analysis, the slope, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were determined. Qualitative image analysis was conducted by three readers, rating image quality and vessel-specific parameters on a 4-point Likert scale. Readers evaluated both datasets for cerebral vessel occlusion presence. VPCT served as the reference standard for calculating sensitivity and specificity.
Results
102 patients were evaluated (mean age 69 ± 13 years; 70 men). DLe-CTA outperformed c-CTA in quantitative (all items p < 0.001) and qualitative image analysis (all items p < 0.05). VPCT revealed 58/102 patients with vascular occlusion. DLe-CTA resulted in significantly higher sensitivity compared to c-CTA (p < 0.001); (all readers put together: c-CTA: 142/174 [81.6 %; 95 % CI: 75.0 %-87.1 %] vs. DLe-CTA 163/174 [94 %; 95 % CI: 89.0 %-96.8 %]). One false positive finding occurred on DLe-CTA (specificity 1/132) [99.2 %; 95 % CI: 95.9 %-100 %].
Conclusions
Deep learning-augmented contrast enhancement improves the image quality and increases the sensitivity of detection vessel occlusions in poorly contrasted CTA.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.