利用黎曼几何网络对运动意象脑电图进行多级分类的框架。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-11-11 DOI:10.1109/JBHI.2024.3496757
Yuxuan Shi, Aimin Jiang, Ju Zhong, Min Li, Yanping Zhu
{"title":"利用黎曼几何网络对运动意象脑电图进行多级分类的框架。","authors":"Yuxuan Shi, Aimin Jiang, Ju Zhong, Min Li, Yanping Zhu","doi":"10.1109/JBHI.2024.3496757","DOIUrl":null,"url":null,"abstract":"<p><p>In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riemannian geometry is widely utilized to extract classification features. However, calculating distances between SCMs is computationally intensive due to operations like eigenvalue decomposition, and classical optimization techniques, such as gradient descent, cannot be directly applied to Riemannian manifolds, making the computation of the Riemannian mean more complex and reliant on iterative methods or approximations. In this paper, we propose a novel multiclass classification framework that integrates Riemannian geometry and neural networks to mitigate these challenges. The framework comprises two modules: a Riemannian module with multiple branches and a classification module. During training, a fusion loss function is introduced to update the branch corresponding to the true label, while other branches are updated using different loss functions along with the classification module. Comprehensive experiments on four sets of MI EEG data demonstrate the efficiency and effectiveness of the proposed model.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiclass Classification Framework of Motor Imagery EEG by Riemannian Geometry Networks.\",\"authors\":\"Yuxuan Shi, Aimin Jiang, Ju Zhong, Min Li, Yanping Zhu\",\"doi\":\"10.1109/JBHI.2024.3496757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riemannian geometry is widely utilized to extract classification features. However, calculating distances between SCMs is computationally intensive due to operations like eigenvalue decomposition, and classical optimization techniques, such as gradient descent, cannot be directly applied to Riemannian manifolds, making the computation of the Riemannian mean more complex and reliant on iterative methods or approximations. In this paper, we propose a novel multiclass classification framework that integrates Riemannian geometry and neural networks to mitigate these challenges. The framework comprises two modules: a Riemannian module with multiple branches and a classification module. During training, a fusion loss function is introduced to update the branch corresponding to the true label, while other branches are updated using different loss functions along with the classification module. Comprehensive experiments on four sets of MI EEG data demonstrate the efficiency and effectiveness of the proposed model.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3496757\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3496757","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在脑计算机接口(BCI)的运动想象(MI)任务中,脑电图(EEG)信号的空间协方差矩阵(SCM)对准确分类起着至关重要的作用。鉴于空间协方差矩阵是对称正定(SPD)的,黎曼几何被广泛用于提取分类特征。然而,由于特征值分解等操作,计算单片机之间的距离需要大量计算,而且梯度下降等经典优化技术不能直接应用于黎曼流形,这使得黎曼均值的计算变得更加复杂,并依赖于迭代法或近似法。在本文中,我们提出了一个新颖的多类分类框架,将黎曼几何和神经网络整合在一起,以减轻这些挑战。该框架由两个模块组成:具有多个分支的黎曼模块和分类模块。在训练过程中,引入一个融合损失函数来更新与真实标签相对应的分支,而其他分支则与分类模块一起使用不同的损失函数进行更新。四组 MI EEG 数据的综合实验证明了所提模型的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiclass Classification Framework of Motor Imagery EEG by Riemannian Geometry Networks.

In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riemannian geometry is widely utilized to extract classification features. However, calculating distances between SCMs is computationally intensive due to operations like eigenvalue decomposition, and classical optimization techniques, such as gradient descent, cannot be directly applied to Riemannian manifolds, making the computation of the Riemannian mean more complex and reliant on iterative methods or approximations. In this paper, we propose a novel multiclass classification framework that integrates Riemannian geometry and neural networks to mitigate these challenges. The framework comprises two modules: a Riemannian module with multiple branches and a classification module. During training, a fusion loss function is introduced to update the branch corresponding to the true label, while other branches are updated using different loss functions along with the classification module. Comprehensive experiments on four sets of MI EEG data demonstrate the efficiency and effectiveness of the proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform. Biomedical Information Integration via Adaptive Large Language Model Construction. BloodPatrol: Revolutionizing Blood Cancer Diagnosis - Advanced Real-Time Detection Leveraging Deep Learning & Cloud Technologies. EEG Detection and Prediction of Freezing of Gait in Parkinson's Disease Based on Spatiotemporal Coherent Modes. Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1