Fernando H Ramírez-Guadiana, Anna P Brogan, David Z Rudner
{"title":"枯草芽孢杆菌孢子萌发蛋白 GerY 的鉴定和表征。","authors":"Fernando H Ramírez-Guadiana, Anna P Brogan, David Z Rudner","doi":"10.1128/jb.00399-24","DOIUrl":null,"url":null,"abstract":"<p><p>In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth when nutrients become available. To identify uncharacterized factors involved in the exit from dormancy, we performed a transposon-sequencing screen taking advantage of the loss of spore heat resistance that accompanies germination. We reasoned that transposon insertions that impair but do not block germination will lose resistance more slowly than wild type after exposure to nutrients and will therefore survive heat treatment. Using this approach, we identified most of the known germination genes and several new ones. We report an initial characterization of 15 of these genes and a more detailed analysis of one (<i>ymaF</i>). Spores lacking <i>ymaF</i> (renamed <i>gerY</i>) are impaired in germination in response to both L-alanine and L-asparagine, D-glucose, D-fructose, and K<sup>+</sup>. GerY is a soluble protein synthesized under <i>σ</i><sup><i>E</i></sup> control in the mother cell. A YFP-GerY fusion localizes around the developing and mature spore in a manner that depends on CotE and SafA, indicating that it is a component of the spore coat. Coat proteins encoded by the <i>gerP</i> operon and <i>gerT</i> are also required for efficient germination, and we show that spores lacking two or all three of these loci have more severe defects in the exit from dormancy. Our data are consistent with a model in which GerY, GerT, and the GerP proteins are required for efficient transit of nutrients through the coat to access the germination receptors, but each acts independently in this process.</p><p><strong>Importance: </strong>Pathogens in the orders Bacillales and Clostridiales resist sterilization by differentiating into stress-resistant spores. Spores are metabolically inactive and can remain dormant for decades, yet upon exposure to nutrients, they rapidly resume growth, causing food spoilage, food-borne illness, or life-threatening disease. The exit from dormancy, called germination, is a key target in combating these important pathogens. Here, we report a high-throughput genetic screen using transposon sequencing to identify novel germination factors that ensure the efficient exit from dormancy. We identify several new factors and characterize one in greater detail. This factor, renamed GerY, is part of the proteinaceous coat that encapsulates the dormant spore. Our data suggest that GerY enables efficient transit of nutrients through the coat to trigger germination.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0039924"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of the <i>Bacillus subtilis</i> spore germination protein GerY.\",\"authors\":\"Fernando H Ramírez-Guadiana, Anna P Brogan, David Z Rudner\",\"doi\":\"10.1128/jb.00399-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth when nutrients become available. To identify uncharacterized factors involved in the exit from dormancy, we performed a transposon-sequencing screen taking advantage of the loss of spore heat resistance that accompanies germination. We reasoned that transposon insertions that impair but do not block germination will lose resistance more slowly than wild type after exposure to nutrients and will therefore survive heat treatment. Using this approach, we identified most of the known germination genes and several new ones. We report an initial characterization of 15 of these genes and a more detailed analysis of one (<i>ymaF</i>). Spores lacking <i>ymaF</i> (renamed <i>gerY</i>) are impaired in germination in response to both L-alanine and L-asparagine, D-glucose, D-fructose, and K<sup>+</sup>. GerY is a soluble protein synthesized under <i>σ</i><sup><i>E</i></sup> control in the mother cell. A YFP-GerY fusion localizes around the developing and mature spore in a manner that depends on CotE and SafA, indicating that it is a component of the spore coat. Coat proteins encoded by the <i>gerP</i> operon and <i>gerT</i> are also required for efficient germination, and we show that spores lacking two or all three of these loci have more severe defects in the exit from dormancy. Our data are consistent with a model in which GerY, GerT, and the GerP proteins are required for efficient transit of nutrients through the coat to access the germination receptors, but each acts independently in this process.</p><p><strong>Importance: </strong>Pathogens in the orders Bacillales and Clostridiales resist sterilization by differentiating into stress-resistant spores. Spores are metabolically inactive and can remain dormant for decades, yet upon exposure to nutrients, they rapidly resume growth, causing food spoilage, food-borne illness, or life-threatening disease. The exit from dormancy, called germination, is a key target in combating these important pathogens. Here, we report a high-throughput genetic screen using transposon sequencing to identify novel germination factors that ensure the efficient exit from dormancy. We identify several new factors and characterize one in greater detail. This factor, renamed GerY, is part of the proteinaceous coat that encapsulates the dormant spore. Our data suggest that GerY enables efficient transit of nutrients through the coat to trigger germination.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0039924\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00399-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00399-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Identification and characterization of the Bacillus subtilis spore germination protein GerY.
In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth when nutrients become available. To identify uncharacterized factors involved in the exit from dormancy, we performed a transposon-sequencing screen taking advantage of the loss of spore heat resistance that accompanies germination. We reasoned that transposon insertions that impair but do not block germination will lose resistance more slowly than wild type after exposure to nutrients and will therefore survive heat treatment. Using this approach, we identified most of the known germination genes and several new ones. We report an initial characterization of 15 of these genes and a more detailed analysis of one (ymaF). Spores lacking ymaF (renamed gerY) are impaired in germination in response to both L-alanine and L-asparagine, D-glucose, D-fructose, and K+. GerY is a soluble protein synthesized under σE control in the mother cell. A YFP-GerY fusion localizes around the developing and mature spore in a manner that depends on CotE and SafA, indicating that it is a component of the spore coat. Coat proteins encoded by the gerP operon and gerT are also required for efficient germination, and we show that spores lacking two or all three of these loci have more severe defects in the exit from dormancy. Our data are consistent with a model in which GerY, GerT, and the GerP proteins are required for efficient transit of nutrients through the coat to access the germination receptors, but each acts independently in this process.
Importance: Pathogens in the orders Bacillales and Clostridiales resist sterilization by differentiating into stress-resistant spores. Spores are metabolically inactive and can remain dormant for decades, yet upon exposure to nutrients, they rapidly resume growth, causing food spoilage, food-borne illness, or life-threatening disease. The exit from dormancy, called germination, is a key target in combating these important pathogens. Here, we report a high-throughput genetic screen using transposon sequencing to identify novel germination factors that ensure the efficient exit from dormancy. We identify several new factors and characterize one in greater detail. This factor, renamed GerY, is part of the proteinaceous coat that encapsulates the dormant spore. Our data suggest that GerY enables efficient transit of nutrients through the coat to trigger germination.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.