结合高清经颅直流电刺激和足部核心运动的四周干预对动态姿势稳定性的影响。

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2024-11-07 DOI:10.1016/j.jbiomech.2024.112418
Baofeng Wang , Bin Shen , Songlin Xiao , Junhong Zhou , Weijie Fu
{"title":"结合高清经颅直流电刺激和足部核心运动的四周干预对动态姿势稳定性的影响。","authors":"Baofeng Wang ,&nbsp;Bin Shen ,&nbsp;Songlin Xiao ,&nbsp;Junhong Zhou ,&nbsp;Weijie Fu","doi":"10.1016/j.jbiomech.2024.112418","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to evaluate the effect of combining high-definition transcranial direct current stimulation (HD-tDCS) with foot core exercise (FCE) on dynamic postural stability and to determine whether the improvement achieved through this mix-type intervention outperforms the intervention of HD-tDCS and FCE alone. Sixty healthy males were recruited and randomly divided into four groups: (1) HD-tDCS + FCE group (HD-tDCS combined with FCE intervention); (2) s-tDCS + FCE (sham tDCS combined with FCE intervention); (3) HD-tDCS group which only received HD-tDCS; (4) FCE group which only performed FCE. All participants received a four-week intervention (3 times a week, 20 min each time). The Y-balance task was completed before and after the intervention. The maximum reaching distance was recorded, and the data of the center of pressure (COP) were collected by a three-dimensional force plate to calculate COP displacement and velocity. No significant change in COP displacement was found among the four groups. However, the COP velocity decreased significantly in the posteromedial direction after HD-tDCS + FCE intervention compared with the baseline. The maximum reach distance was significantly increased after HD-tDCS + FCE intervention in the posteromedial (<em>p</em> &lt; 0.001) and posterolateral (<em>p</em> &lt; 0.001) directions of the Y balance task compared with the baseline, and the extent of increase was greater than that in the three other groups. The intervention of HD-tDCS combined with FCE may exert a synergistic effect and more effectively improve dynamic postural stability.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"177 ","pages":"Article 112418"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of four weeks intervention combining high-definition transcranial direct current stimulation and foot core exercise on dynamic postural stability\",\"authors\":\"Baofeng Wang ,&nbsp;Bin Shen ,&nbsp;Songlin Xiao ,&nbsp;Junhong Zhou ,&nbsp;Weijie Fu\",\"doi\":\"10.1016/j.jbiomech.2024.112418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to evaluate the effect of combining high-definition transcranial direct current stimulation (HD-tDCS) with foot core exercise (FCE) on dynamic postural stability and to determine whether the improvement achieved through this mix-type intervention outperforms the intervention of HD-tDCS and FCE alone. Sixty healthy males were recruited and randomly divided into four groups: (1) HD-tDCS + FCE group (HD-tDCS combined with FCE intervention); (2) s-tDCS + FCE (sham tDCS combined with FCE intervention); (3) HD-tDCS group which only received HD-tDCS; (4) FCE group which only performed FCE. All participants received a four-week intervention (3 times a week, 20 min each time). The Y-balance task was completed before and after the intervention. The maximum reaching distance was recorded, and the data of the center of pressure (COP) were collected by a three-dimensional force plate to calculate COP displacement and velocity. No significant change in COP displacement was found among the four groups. However, the COP velocity decreased significantly in the posteromedial direction after HD-tDCS + FCE intervention compared with the baseline. The maximum reach distance was significantly increased after HD-tDCS + FCE intervention in the posteromedial (<em>p</em> &lt; 0.001) and posterolateral (<em>p</em> &lt; 0.001) directions of the Y balance task compared with the baseline, and the extent of increase was greater than that in the three other groups. The intervention of HD-tDCS combined with FCE may exert a synergistic effect and more effectively improve dynamic postural stability.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"177 \",\"pages\":\"Article 112418\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024004962\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004962","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估高清经颅直流电刺激(HD-tDCS)与足部核心锻炼(FCE)相结合对动态姿势稳定性的影响,并确定这种混合型干预所取得的改善效果是否优于单纯的 HD-tDCS 和 FCE 干预。研究人员招募了 60 名健康男性,并将其随机分为四组:(1)HD-tDCS + FCE 组(HD-tDCS 与 FCE 联合干预);(2)s-tDCS + FCE 组(假 tDCS 与 FCE 联合干预);(3)HD-tDCS 组,仅接受 HD-tDCS;(4)FCE 组,仅进行 FCE。所有参与者都接受了为期四周的干预(每周 3 次,每次 20 分钟)。干预前后均完成了 Y 平衡任务。记录最大伸手距离,并通过三维测力板收集压力中心(COP)数据,计算 COP 位移和速度。结果显示,四组患者的 COP 位移均无明显变化。然而,与基线相比,HD-tDCS + FCE 干预后 COP 速度在后内侧方向明显下降。HD-tDCS + FCE 干预后,后内侧的最大伸展距离明显增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of four weeks intervention combining high-definition transcranial direct current stimulation and foot core exercise on dynamic postural stability
This study aimed to evaluate the effect of combining high-definition transcranial direct current stimulation (HD-tDCS) with foot core exercise (FCE) on dynamic postural stability and to determine whether the improvement achieved through this mix-type intervention outperforms the intervention of HD-tDCS and FCE alone. Sixty healthy males were recruited and randomly divided into four groups: (1) HD-tDCS + FCE group (HD-tDCS combined with FCE intervention); (2) s-tDCS + FCE (sham tDCS combined with FCE intervention); (3) HD-tDCS group which only received HD-tDCS; (4) FCE group which only performed FCE. All participants received a four-week intervention (3 times a week, 20 min each time). The Y-balance task was completed before and after the intervention. The maximum reaching distance was recorded, and the data of the center of pressure (COP) were collected by a three-dimensional force plate to calculate COP displacement and velocity. No significant change in COP displacement was found among the four groups. However, the COP velocity decreased significantly in the posteromedial direction after HD-tDCS + FCE intervention compared with the baseline. The maximum reach distance was significantly increased after HD-tDCS + FCE intervention in the posteromedial (p < 0.001) and posterolateral (p < 0.001) directions of the Y balance task compared with the baseline, and the extent of increase was greater than that in the three other groups. The intervention of HD-tDCS combined with FCE may exert a synergistic effect and more effectively improve dynamic postural stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Efficient development of subject-specific finite element knee models: Automated identification of soft-tissue attachments The aging Achilles tendon: model-predicted changes in calf muscle neuromechanics Lumbopelvic rhythm analysis by quartiles: Identification of differences in lumbar and pelvic contribution during trunk flexion and extension in subjects with low back pain of different origin. A case-control study Effects of knee joint position on the triceps Suræ torque-size relationship during plantarflexion in healthy young adults Differential T2* changes in tibialis anterior and soleus: Influence of exercise type and perceived exertion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1