{"title":"多柔比星诱发人类心脏毒性的新靶点和生物标志物:从毒物基因组学数据和分子建模中得出的启示。","authors":"Fuat Karakuş, Abdulilah Ece, Burak Kuzu","doi":"10.1080/07391102.2024.2427380","DOIUrl":null,"url":null,"abstract":"<p><p>The doxorubicin-induced cardiotoxicity continues to be a life-threatening adverse effect in the clinic. Doxorubicin-induced acute cardiotoxicity is reversible, whereas chronic cardiotoxicity is irreversible, leading to dilated cardiomyopathy and heart failure. The aim of this study was to identify the molecular mechanisms associated with doxorubicin metabolites in doxorubicin-induced chronic cardiotoxicity. For this purpose, literature searches and <i>in silico</i> toxicogenomic analyses were conducted using various tools, including the Comparative Toxicogenomic Database, GeneMANIA, Metascape, MIENTURNET, ChEA3, and AutoDock. Additionally, molecular dynamics simulations were performed for 500 ns using Schrödinger software to assess the stability and dynamics of the representative docked complexes. We observed that doxorubicin biotransformed into five metabolites in the human heart and identified 11 common genes related to doxorubicin, its metabolites, dilated cardiomyopathy, and heart failure. Our findings revealed that doxorubicin and its metabolites primarily exhibited binding affinity to the beta-1 adrenergic receptor and fatty acid synthase. Furthermore, we identified several key transcription factors, especially the Homeobox protein Nkx-2.6, and hsa-miR-183-3p associated with this cardiotoxicity. Finally, we observed that, in addition to doxorubicinol, 7-deoxidoxorubicinone, another metabolite of doxorubicin, may also contribute to this cardiotoxicity. These findings contribute to our understanding of the processes underlying doxorubicin-induced chronic cardiotoxicity.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-13"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New targets and biomarkers for doxorubicin-induced cardiotoxicity in humans: implications drawn from toxicogenomic data and molecular modelling.\",\"authors\":\"Fuat Karakuş, Abdulilah Ece, Burak Kuzu\",\"doi\":\"10.1080/07391102.2024.2427380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The doxorubicin-induced cardiotoxicity continues to be a life-threatening adverse effect in the clinic. Doxorubicin-induced acute cardiotoxicity is reversible, whereas chronic cardiotoxicity is irreversible, leading to dilated cardiomyopathy and heart failure. The aim of this study was to identify the molecular mechanisms associated with doxorubicin metabolites in doxorubicin-induced chronic cardiotoxicity. For this purpose, literature searches and <i>in silico</i> toxicogenomic analyses were conducted using various tools, including the Comparative Toxicogenomic Database, GeneMANIA, Metascape, MIENTURNET, ChEA3, and AutoDock. Additionally, molecular dynamics simulations were performed for 500 ns using Schrödinger software to assess the stability and dynamics of the representative docked complexes. We observed that doxorubicin biotransformed into five metabolites in the human heart and identified 11 common genes related to doxorubicin, its metabolites, dilated cardiomyopathy, and heart failure. Our findings revealed that doxorubicin and its metabolites primarily exhibited binding affinity to the beta-1 adrenergic receptor and fatty acid synthase. Furthermore, we identified several key transcription factors, especially the Homeobox protein Nkx-2.6, and hsa-miR-183-3p associated with this cardiotoxicity. Finally, we observed that, in addition to doxorubicinol, 7-deoxidoxorubicinone, another metabolite of doxorubicin, may also contribute to this cardiotoxicity. These findings contribute to our understanding of the processes underlying doxorubicin-induced chronic cardiotoxicity.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2427380\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2427380","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
New targets and biomarkers for doxorubicin-induced cardiotoxicity in humans: implications drawn from toxicogenomic data and molecular modelling.
The doxorubicin-induced cardiotoxicity continues to be a life-threatening adverse effect in the clinic. Doxorubicin-induced acute cardiotoxicity is reversible, whereas chronic cardiotoxicity is irreversible, leading to dilated cardiomyopathy and heart failure. The aim of this study was to identify the molecular mechanisms associated with doxorubicin metabolites in doxorubicin-induced chronic cardiotoxicity. For this purpose, literature searches and in silico toxicogenomic analyses were conducted using various tools, including the Comparative Toxicogenomic Database, GeneMANIA, Metascape, MIENTURNET, ChEA3, and AutoDock. Additionally, molecular dynamics simulations were performed for 500 ns using Schrödinger software to assess the stability and dynamics of the representative docked complexes. We observed that doxorubicin biotransformed into five metabolites in the human heart and identified 11 common genes related to doxorubicin, its metabolites, dilated cardiomyopathy, and heart failure. Our findings revealed that doxorubicin and its metabolites primarily exhibited binding affinity to the beta-1 adrenergic receptor and fatty acid synthase. Furthermore, we identified several key transcription factors, especially the Homeobox protein Nkx-2.6, and hsa-miR-183-3p associated with this cardiotoxicity. Finally, we observed that, in addition to doxorubicinol, 7-deoxidoxorubicinone, another metabolite of doxorubicin, may also contribute to this cardiotoxicity. These findings contribute to our understanding of the processes underlying doxorubicin-induced chronic cardiotoxicity.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.