{"title":"大鼠三叉神经系统中 CGRP 家族受体和配体表达的性别差异。","authors":"Aida Maddahi, Jacob C A Edvinsson, Lars Edvinsson","doi":"10.1186/s10194-024-01893-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Calcitonin gene-related peptide (CGRP) is part of the calcitonin peptide family, which includes calcitonin (CT), amylin (AMY), and adrenomedullin (ADM). CGRP and its receptor are highly present in the trigeminovascular system (TVS). Recent research suggests that other members of the calcitonin family could be feasible therapeutic targets in the treatment of migraine. The present study aims to elucidate the distribution of ADM, AMY, CT, and their receptors in the rat TVS, and to explore potential sex differences in their expression.</p><p><strong>Methods: </strong>Trigeminal ganglia (TG) were dissected from male and female adult rats. Protein and gene expression were assessed through immunohistochemistry and RT-qPCR. Additionally, the dura mater was isolated for further investigation of protein expression and fiber localization using immunohistochemistry.</p><p><strong>Results: </strong>Quantitative gene expression analysis revealed the presence of all genes in male and female TGs, except for calcitonin receptor (CTR). Notably, CGRP mRNA levels in TG were several folds higher than those of other genes. The receptor activity-modifying protein-1 (RAMP1) mRNA levels were significantly higher in female compared to male. No AMY or CT immunoreactivity was observed in the TVS. In contrast, immunoreactivity for ADM, CGRP, RAMP1, CTR, and calcitonin-like receptor (CLR) were observed in the cytoplasm of TG neurons. Immunoreactive Aδ-fibers storing RAMP1, ADM and CLR were also identified. RAMP2 and RAMP3 were expressed in nucleus of TG neurons and in satellite glial cells. Furthermore, RAMP1 and CLR were co-localized with CASPR in the nodes of Ranvier located in Aδ-fibers.</p><p><strong>Conclusions: </strong>This study provides valuable insights into the distribution of the CGRP family of peptides and their receptors in the TVS. CGRP mRNA levels in the TG were markedly higher than those of other genes, demonstrating the key role of CGRP. The co-localization of CLR and RAMP1 on Aδ-fibers with CASPR suggests a potential role for this receptor in modulating trigeminal nerve function and neuronal excitability, with implications for migraine pathophysiology. Additionally, RAMP1 mRNA levels were significantly higher in female TG compared to males, indicating sex-specific differences in gene expression. These findings underscore the need for further research into the functional significance of gender-related variations.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"25 1","pages":"193"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex differences in expression of CGRP family of receptors and ligands in the rat trigeminal system.\",\"authors\":\"Aida Maddahi, Jacob C A Edvinsson, Lars Edvinsson\",\"doi\":\"10.1186/s10194-024-01893-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Calcitonin gene-related peptide (CGRP) is part of the calcitonin peptide family, which includes calcitonin (CT), amylin (AMY), and adrenomedullin (ADM). CGRP and its receptor are highly present in the trigeminovascular system (TVS). Recent research suggests that other members of the calcitonin family could be feasible therapeutic targets in the treatment of migraine. The present study aims to elucidate the distribution of ADM, AMY, CT, and their receptors in the rat TVS, and to explore potential sex differences in their expression.</p><p><strong>Methods: </strong>Trigeminal ganglia (TG) were dissected from male and female adult rats. Protein and gene expression were assessed through immunohistochemistry and RT-qPCR. Additionally, the dura mater was isolated for further investigation of protein expression and fiber localization using immunohistochemistry.</p><p><strong>Results: </strong>Quantitative gene expression analysis revealed the presence of all genes in male and female TGs, except for calcitonin receptor (CTR). Notably, CGRP mRNA levels in TG were several folds higher than those of other genes. The receptor activity-modifying protein-1 (RAMP1) mRNA levels were significantly higher in female compared to male. No AMY or CT immunoreactivity was observed in the TVS. In contrast, immunoreactivity for ADM, CGRP, RAMP1, CTR, and calcitonin-like receptor (CLR) were observed in the cytoplasm of TG neurons. Immunoreactive Aδ-fibers storing RAMP1, ADM and CLR were also identified. RAMP2 and RAMP3 were expressed in nucleus of TG neurons and in satellite glial cells. Furthermore, RAMP1 and CLR were co-localized with CASPR in the nodes of Ranvier located in Aδ-fibers.</p><p><strong>Conclusions: </strong>This study provides valuable insights into the distribution of the CGRP family of peptides and their receptors in the TVS. CGRP mRNA levels in the TG were markedly higher than those of other genes, demonstrating the key role of CGRP. The co-localization of CLR and RAMP1 on Aδ-fibers with CASPR suggests a potential role for this receptor in modulating trigeminal nerve function and neuronal excitability, with implications for migraine pathophysiology. Additionally, RAMP1 mRNA levels were significantly higher in female TG compared to males, indicating sex-specific differences in gene expression. These findings underscore the need for further research into the functional significance of gender-related variations.</p>\",\"PeriodicalId\":16013,\"journal\":{\"name\":\"Journal of Headache and Pain\",\"volume\":\"25 1\",\"pages\":\"193\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Headache and Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10194-024-01893-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-024-01893-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Sex differences in expression of CGRP family of receptors and ligands in the rat trigeminal system.
Background: Calcitonin gene-related peptide (CGRP) is part of the calcitonin peptide family, which includes calcitonin (CT), amylin (AMY), and adrenomedullin (ADM). CGRP and its receptor are highly present in the trigeminovascular system (TVS). Recent research suggests that other members of the calcitonin family could be feasible therapeutic targets in the treatment of migraine. The present study aims to elucidate the distribution of ADM, AMY, CT, and their receptors in the rat TVS, and to explore potential sex differences in their expression.
Methods: Trigeminal ganglia (TG) were dissected from male and female adult rats. Protein and gene expression were assessed through immunohistochemistry and RT-qPCR. Additionally, the dura mater was isolated for further investigation of protein expression and fiber localization using immunohistochemistry.
Results: Quantitative gene expression analysis revealed the presence of all genes in male and female TGs, except for calcitonin receptor (CTR). Notably, CGRP mRNA levels in TG were several folds higher than those of other genes. The receptor activity-modifying protein-1 (RAMP1) mRNA levels were significantly higher in female compared to male. No AMY or CT immunoreactivity was observed in the TVS. In contrast, immunoreactivity for ADM, CGRP, RAMP1, CTR, and calcitonin-like receptor (CLR) were observed in the cytoplasm of TG neurons. Immunoreactive Aδ-fibers storing RAMP1, ADM and CLR were also identified. RAMP2 and RAMP3 were expressed in nucleus of TG neurons and in satellite glial cells. Furthermore, RAMP1 and CLR were co-localized with CASPR in the nodes of Ranvier located in Aδ-fibers.
Conclusions: This study provides valuable insights into the distribution of the CGRP family of peptides and their receptors in the TVS. CGRP mRNA levels in the TG were markedly higher than those of other genes, demonstrating the key role of CGRP. The co-localization of CLR and RAMP1 on Aδ-fibers with CASPR suggests a potential role for this receptor in modulating trigeminal nerve function and neuronal excitability, with implications for migraine pathophysiology. Additionally, RAMP1 mRNA levels were significantly higher in female TG compared to males, indicating sex-specific differences in gene expression. These findings underscore the need for further research into the functional significance of gender-related variations.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.