Nicholas B Bechet, Aybuke Celik, Margareta Mittendorfer, Qi Wang, Tibor Huzevka, Gunilla Kjellberg, Embla Boden, Gabriel Hirdman, Leif Pierre, Anna Niroomand, Franziska Olm, James D McCully, Sandra Lindstedt
{"title":"线粒体异种移植:缓解体外肺灌注过程中缺血再灌注损伤的新策略","authors":"Nicholas B Bechet, Aybuke Celik, Margareta Mittendorfer, Qi Wang, Tibor Huzevka, Gunilla Kjellberg, Embla Boden, Gabriel Hirdman, Leif Pierre, Anna Niroomand, Franziska Olm, James D McCully, Sandra Lindstedt","doi":"10.1016/j.healun.2024.10.033","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion injury (IRI) plays a crucial role in the development of primary graft dysfunction (PGD) following lung transplantation. A promising novel approach to optimize donor organs before transplantation and reduce the incidence of PGD is mitochondrial transplantation. In this study, we explored the delivery of isolated mitochondria in 4 hour ex vivo lung perfusion (EVLP) before transplantation as a means to mitigate IRI. To provide a fresh and viable source of mitochondria, as well as to streamline the workflow without the need for donor muscle biopsies, we investigated the impact of autologous, allogeneic and xenogeneic mitochondrial transplantation. In the xenogeneic settings, isolated mitochondria from mouse liver were utilized while autologous and allogeneic sources came from pig skeletal muscle biopsies. Treatment with mitochondrial transplantation increased the P/F ratio and reduced pulmonary peak pressure of the lungs during EVLP, compared to lungs without any mitochondrial transplantation, indicating IRI mitigation. Extensive investigations using advanced light and scanning electron microscopy did not reveal evidence of acute rejection in any of the groups, indicating safe xenotransplantation of mitochondria. Future work is needed to further explore this novel therapy for combating IRI in lung transplantation, where xenotransplantation of mitochondria may serve as a fresh, viable source to reduce IRI.</p>","PeriodicalId":15900,"journal":{"name":"Journal of Heart and Lung Transplantation","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Xenotransplantation of Mitochondria: A Novel Strategy to Alleviate Ischemia-Reperfusion Injury during Ex Vivo Lung Perfusion.\",\"authors\":\"Nicholas B Bechet, Aybuke Celik, Margareta Mittendorfer, Qi Wang, Tibor Huzevka, Gunilla Kjellberg, Embla Boden, Gabriel Hirdman, Leif Pierre, Anna Niroomand, Franziska Olm, James D McCully, Sandra Lindstedt\",\"doi\":\"10.1016/j.healun.2024.10.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemia-reperfusion injury (IRI) plays a crucial role in the development of primary graft dysfunction (PGD) following lung transplantation. A promising novel approach to optimize donor organs before transplantation and reduce the incidence of PGD is mitochondrial transplantation. In this study, we explored the delivery of isolated mitochondria in 4 hour ex vivo lung perfusion (EVLP) before transplantation as a means to mitigate IRI. To provide a fresh and viable source of mitochondria, as well as to streamline the workflow without the need for donor muscle biopsies, we investigated the impact of autologous, allogeneic and xenogeneic mitochondrial transplantation. In the xenogeneic settings, isolated mitochondria from mouse liver were utilized while autologous and allogeneic sources came from pig skeletal muscle biopsies. Treatment with mitochondrial transplantation increased the P/F ratio and reduced pulmonary peak pressure of the lungs during EVLP, compared to lungs without any mitochondrial transplantation, indicating IRI mitigation. Extensive investigations using advanced light and scanning electron microscopy did not reveal evidence of acute rejection in any of the groups, indicating safe xenotransplantation of mitochondria. Future work is needed to further explore this novel therapy for combating IRI in lung transplantation, where xenotransplantation of mitochondria may serve as a fresh, viable source to reduce IRI.</p>\",\"PeriodicalId\":15900,\"journal\":{\"name\":\"Journal of Heart and Lung Transplantation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heart and Lung Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.healun.2024.10.033\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heart and Lung Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.healun.2024.10.033","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Xenotransplantation of Mitochondria: A Novel Strategy to Alleviate Ischemia-Reperfusion Injury during Ex Vivo Lung Perfusion.
Ischemia-reperfusion injury (IRI) plays a crucial role in the development of primary graft dysfunction (PGD) following lung transplantation. A promising novel approach to optimize donor organs before transplantation and reduce the incidence of PGD is mitochondrial transplantation. In this study, we explored the delivery of isolated mitochondria in 4 hour ex vivo lung perfusion (EVLP) before transplantation as a means to mitigate IRI. To provide a fresh and viable source of mitochondria, as well as to streamline the workflow without the need for donor muscle biopsies, we investigated the impact of autologous, allogeneic and xenogeneic mitochondrial transplantation. In the xenogeneic settings, isolated mitochondria from mouse liver were utilized while autologous and allogeneic sources came from pig skeletal muscle biopsies. Treatment with mitochondrial transplantation increased the P/F ratio and reduced pulmonary peak pressure of the lungs during EVLP, compared to lungs without any mitochondrial transplantation, indicating IRI mitigation. Extensive investigations using advanced light and scanning electron microscopy did not reveal evidence of acute rejection in any of the groups, indicating safe xenotransplantation of mitochondria. Future work is needed to further explore this novel therapy for combating IRI in lung transplantation, where xenotransplantation of mitochondria may serve as a fresh, viable source to reduce IRI.
期刊介绍:
The Journal of Heart and Lung Transplantation, the official publication of the International Society for Heart and Lung Transplantation, brings readers essential scholarly and timely information in the field of cardio-pulmonary transplantation, mechanical and biological support of the failing heart, advanced lung disease (including pulmonary vascular disease) and cell replacement therapy. Importantly, the journal also serves as a medium of communication of pre-clinical sciences in all these rapidly expanding areas.