一个估算冬季处于温暖期的橄榄树花期过渡程度的模型。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2024-11-13 DOI:10.1093/jxb/erae459
Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander
{"title":"一个估算冬季处于温暖期的橄榄树花期过渡程度的模型。","authors":"Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander","doi":"10.1093/jxb/erae459","DOIUrl":null,"url":null,"abstract":"<p><p>Rising winter temperatures jeopardize the fruit yield of trees that require a prolonged and sufficiently cold winter to flower. Predicting the exact risk to different crop varieties is the first step in mitigating the harmful effects of climate change. This work focused on olive (Olea europaea) - a traditional crop in the Mediterranean basin whose flowering depends on the sufficiency of cold periods and the lack of warm ones during the preceding winter. Yet, a satisfactory quantitative model forecasting its expected flowering under natural temperature conditions is still lacking. The effect of different temperature regimes on olive flowering level and flowering-gene expression was empirically tested. A modified 'dynamic model' describing the response of a putative flowering factor to the temperature signal was constructed. The crucial component of the model was an unstable intermediate, produced and degraded at temperature-dependent rates. The model accounts for both the number of cold and warm hours but also for their sequence. Empirical flowering and temperature data were applied to fit the model parameters, applying numerical constrained optimization techniques; the model outcomes were successfully validated. The model accurately predicted low-to-moderate flowering under winters with warm periods and properly accounted for the effects of warm periods during winter.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model estimating the level of floral transition in olive trees exposed to warm periods during winter.\",\"authors\":\"Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander\",\"doi\":\"10.1093/jxb/erae459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rising winter temperatures jeopardize the fruit yield of trees that require a prolonged and sufficiently cold winter to flower. Predicting the exact risk to different crop varieties is the first step in mitigating the harmful effects of climate change. This work focused on olive (Olea europaea) - a traditional crop in the Mediterranean basin whose flowering depends on the sufficiency of cold periods and the lack of warm ones during the preceding winter. Yet, a satisfactory quantitative model forecasting its expected flowering under natural temperature conditions is still lacking. The effect of different temperature regimes on olive flowering level and flowering-gene expression was empirically tested. A modified 'dynamic model' describing the response of a putative flowering factor to the temperature signal was constructed. The crucial component of the model was an unstable intermediate, produced and degraded at temperature-dependent rates. The model accounts for both the number of cold and warm hours but also for their sequence. Empirical flowering and temperature data were applied to fit the model parameters, applying numerical constrained optimization techniques; the model outcomes were successfully validated. The model accurately predicted low-to-moderate flowering under winters with warm periods and properly accounted for the effects of warm periods during winter.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae459\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae459","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冬季气温升高会危及果树的产量,因为果树需要一个漫长而足够寒冷的冬季才能开花。预测不同作物品种面临的确切风险是减轻气候变化有害影响的第一步。这项工作的重点是橄榄(Olea europaea)--地中海盆地的一种传统作物,其开花取决于前一个冬季是否有充足的寒冷期和温暖期。然而,目前仍缺乏一个令人满意的定量模型来预测其在自然温度条件下的预期花期。我们根据经验测试了不同温度条件对橄榄开花水平和开花基因表达的影响。构建了一个改进的 "动态模型",描述了假定开花因子对温度信号的响应。该模型的关键部分是一个不稳定的中间体,其产生和降解速度与温度有关。该模型不仅考虑了冷和暖时间的数量,还考虑了它们的顺序。应用数值约束优化技术,将经验花期和温度数据用于拟合模型参数;模型结果得到了成功验证。该模型准确预测了冬季暖期下的中低花期,并适当考虑了冬季暖期的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A model estimating the level of floral transition in olive trees exposed to warm periods during winter.

Rising winter temperatures jeopardize the fruit yield of trees that require a prolonged and sufficiently cold winter to flower. Predicting the exact risk to different crop varieties is the first step in mitigating the harmful effects of climate change. This work focused on olive (Olea europaea) - a traditional crop in the Mediterranean basin whose flowering depends on the sufficiency of cold periods and the lack of warm ones during the preceding winter. Yet, a satisfactory quantitative model forecasting its expected flowering under natural temperature conditions is still lacking. The effect of different temperature regimes on olive flowering level and flowering-gene expression was empirically tested. A modified 'dynamic model' describing the response of a putative flowering factor to the temperature signal was constructed. The crucial component of the model was an unstable intermediate, produced and degraded at temperature-dependent rates. The model accounts for both the number of cold and warm hours but also for their sequence. Empirical flowering and temperature data were applied to fit the model parameters, applying numerical constrained optimization techniques; the model outcomes were successfully validated. The model accurately predicted low-to-moderate flowering under winters with warm periods and properly accounted for the effects of warm periods during winter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Toward understanding grapevine responses to climate change: a multistress and holistic approach. Ethylene modulates wheat response to phosphate deficiency. Correction to: Model forms for triose phosphate utilization-limited photosynthetic rates: implications for estimation of photorespiratory carbon export and the contribution of mesophyll conductance to photosynthesis. Photoperiodic control of growth and reproduction in non-flowering plants. Gibberellins: Extending the Green Revolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1