I-Chun Chen, Che-Lun Chang, Meng-Han Chang, Li-Wei Ko
{"title":"将可穿戴脑电图与行为测量相结合,建立一个实用的多领域模型,以帮助诊断患有注意力缺陷/多动障碍的幼儿。","authors":"I-Chun Chen, Che-Lun Chang, Meng-Han Chang, Li-Wei Ko","doi":"10.1186/s11689-024-09578-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A multi-method, multi-informant approach is crucial for evaluating attention-deficit/hyperactivity disorders (ADHD) in preschool children due to the diagnostic complexities and challenges at this developmental stage. However, most artificial intelligence (AI) studies on the automated detection of ADHD have relied on using a single datatype. This study aims to develop a reliable multimodal AI-detection system to facilitate the diagnosis of ADHD in young children.</p><p><strong>Methods: </strong>78 young children were recruited, including 43 diagnosed with ADHD (mean age: 68.07 ± 6.19 months) and 35 with typical development (mean age: 67.40 ± 5.44 months). Machine learning and deep learning methods were adopted to develop three individual predictive models using electroencephalography (EEG) data recorded with a wearable wireless device, scores from the computerized attention assessment via Conners' Kiddie Continuous Performance Test Second Edition (K-CPT-2), and ratings from ADHD-related symptom scales. Finally, these models were combined to form a single ensemble model.</p><p><strong>Results: </strong>The ensemble model achieved an accuracy of 0.974. While individual modality provided the optimal classification with an accuracy rate of 0.909, 0.922, and 0.950 using the ADHD-related symptom rating scale, the K-CPT-2 score, and the EEG measure, respectively. Moreover, the findings suggest that teacher ratings, K-CPT-2 reaction time, and occipital high-frequency EEG band power values are significant features in identifying young children with ADHD.</p><p><strong>Conclusions: </strong>This study addresses three common issues in ADHD-related AI research: the utility of wearable technologies, integrating databases from diverse ADHD diagnostic instruments, and appropriately interpreting the models. This established multimodal system is potentially reliable and practical for distinguishing ADHD from TD, thus further facilitating the clinical diagnosis of ADHD in preschool young children.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"16 1","pages":"62"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552361/pdf/","citationCount":"0","resultStr":"{\"title\":\"The utility of wearable electroencephalography combined with behavioral measures to establish a practical multi-domain model for facilitating the diagnosis of young children with attention-deficit/hyperactivity disorder.\",\"authors\":\"I-Chun Chen, Che-Lun Chang, Meng-Han Chang, Li-Wei Ko\",\"doi\":\"10.1186/s11689-024-09578-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A multi-method, multi-informant approach is crucial for evaluating attention-deficit/hyperactivity disorders (ADHD) in preschool children due to the diagnostic complexities and challenges at this developmental stage. However, most artificial intelligence (AI) studies on the automated detection of ADHD have relied on using a single datatype. This study aims to develop a reliable multimodal AI-detection system to facilitate the diagnosis of ADHD in young children.</p><p><strong>Methods: </strong>78 young children were recruited, including 43 diagnosed with ADHD (mean age: 68.07 ± 6.19 months) and 35 with typical development (mean age: 67.40 ± 5.44 months). Machine learning and deep learning methods were adopted to develop three individual predictive models using electroencephalography (EEG) data recorded with a wearable wireless device, scores from the computerized attention assessment via Conners' Kiddie Continuous Performance Test Second Edition (K-CPT-2), and ratings from ADHD-related symptom scales. Finally, these models were combined to form a single ensemble model.</p><p><strong>Results: </strong>The ensemble model achieved an accuracy of 0.974. While individual modality provided the optimal classification with an accuracy rate of 0.909, 0.922, and 0.950 using the ADHD-related symptom rating scale, the K-CPT-2 score, and the EEG measure, respectively. Moreover, the findings suggest that teacher ratings, K-CPT-2 reaction time, and occipital high-frequency EEG band power values are significant features in identifying young children with ADHD.</p><p><strong>Conclusions: </strong>This study addresses three common issues in ADHD-related AI research: the utility of wearable technologies, integrating databases from diverse ADHD diagnostic instruments, and appropriately interpreting the models. This established multimodal system is potentially reliable and practical for distinguishing ADHD from TD, thus further facilitating the clinical diagnosis of ADHD in preschool young children.</p>\",\"PeriodicalId\":16530,\"journal\":{\"name\":\"Journal of Neurodevelopmental Disorders\",\"volume\":\"16 1\",\"pages\":\"62\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurodevelopmental Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s11689-024-09578-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-024-09578-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The utility of wearable electroencephalography combined with behavioral measures to establish a practical multi-domain model for facilitating the diagnosis of young children with attention-deficit/hyperactivity disorder.
Background: A multi-method, multi-informant approach is crucial for evaluating attention-deficit/hyperactivity disorders (ADHD) in preschool children due to the diagnostic complexities and challenges at this developmental stage. However, most artificial intelligence (AI) studies on the automated detection of ADHD have relied on using a single datatype. This study aims to develop a reliable multimodal AI-detection system to facilitate the diagnosis of ADHD in young children.
Methods: 78 young children were recruited, including 43 diagnosed with ADHD (mean age: 68.07 ± 6.19 months) and 35 with typical development (mean age: 67.40 ± 5.44 months). Machine learning and deep learning methods were adopted to develop three individual predictive models using electroencephalography (EEG) data recorded with a wearable wireless device, scores from the computerized attention assessment via Conners' Kiddie Continuous Performance Test Second Edition (K-CPT-2), and ratings from ADHD-related symptom scales. Finally, these models were combined to form a single ensemble model.
Results: The ensemble model achieved an accuracy of 0.974. While individual modality provided the optimal classification with an accuracy rate of 0.909, 0.922, and 0.950 using the ADHD-related symptom rating scale, the K-CPT-2 score, and the EEG measure, respectively. Moreover, the findings suggest that teacher ratings, K-CPT-2 reaction time, and occipital high-frequency EEG band power values are significant features in identifying young children with ADHD.
Conclusions: This study addresses three common issues in ADHD-related AI research: the utility of wearable technologies, integrating databases from diverse ADHD diagnostic instruments, and appropriately interpreting the models. This established multimodal system is potentially reliable and practical for distinguishing ADHD from TD, thus further facilitating the clinical diagnosis of ADHD in preschool young children.
期刊介绍:
Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.