Maram H Abduljabbar, Yusuf S Althobaiti, Reem M Alnemari, Farooq M Almutairi, Muneef M Aldhafeeri, Ahmed Serag, Atiah H Almalki
{"title":"GC-MS 和多元分析揭示了贝伐珠单抗对结肠癌大鼠模型血清代谢组的部分修复作用:非靶向代谢组学研究。","authors":"Maram H Abduljabbar, Yusuf S Althobaiti, Reem M Alnemari, Farooq M Almutairi, Muneef M Aldhafeeri, Ahmed Serag, Atiah H Almalki","doi":"10.1016/j.jpba.2024.116562","DOIUrl":null,"url":null,"abstract":"<p><p>Bevacizumab is an anti-angiogenic therapeutic agent that targets vascular endothelial growth factor (VEGF) and has been approved for the treatment of several types of cancer, including colon cancer. Herein, a GC-MS based metabolomics approach was employed to investigate the impact of bevacizumab on the serum metabolome of colon cancer rats. Multivariate chemometric analysis models such as PCA and PLS-DA showed a clear separation between the control, cancer and bevacizumab-treated groups, suggesting that bevacizumab administration induced significant metabolic alterations. Furthermore, pairwise comparisons between the studied groups using the OPLS-DA model in addition to univariate analysis identified several discriminatory metabolites belonged to various chemical classes including amino acids, organic acids and fatty acids that were perturbed between the studied groups. Interestingly, bevacizumab treatment was able to partially restore some of the cancer-induced metabolic disturbances, indicating its potential therapeutic efficacy via improving the tumor vasculature and nutrient delivery. Besides, pathway analysis of the differential metabolites identified key metabolic pathways affected by bevacizumab, which included valine, leucine and isoleucine metabolism, pyruvate metabolism and butanoate metabolism. However, little effects were observed on lipid metabolites such as palmitic acid and stearic acid and consequently their related metabolic pathways such as fatty acid biosynthesis metabolism suggesting that bevacizumab has more prominent effect on energy and amino acid metabolisms as compared to fatty acid metabolism in colon cancer rats. Overall, our study provided novel insights into the metabolic mechanisms underlying the therapeutic effects of bevacizumab in colon cancer rats via the use of a comprehensive GC-MS metabolomics approach.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GC-MS and multivariate analysis reveal partial serum metabolome restoration by bevacizumab in a colon cancer rat model: An untargeted metabolomics investigation.\",\"authors\":\"Maram H Abduljabbar, Yusuf S Althobaiti, Reem M Alnemari, Farooq M Almutairi, Muneef M Aldhafeeri, Ahmed Serag, Atiah H Almalki\",\"doi\":\"10.1016/j.jpba.2024.116562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bevacizumab is an anti-angiogenic therapeutic agent that targets vascular endothelial growth factor (VEGF) and has been approved for the treatment of several types of cancer, including colon cancer. Herein, a GC-MS based metabolomics approach was employed to investigate the impact of bevacizumab on the serum metabolome of colon cancer rats. Multivariate chemometric analysis models such as PCA and PLS-DA showed a clear separation between the control, cancer and bevacizumab-treated groups, suggesting that bevacizumab administration induced significant metabolic alterations. Furthermore, pairwise comparisons between the studied groups using the OPLS-DA model in addition to univariate analysis identified several discriminatory metabolites belonged to various chemical classes including amino acids, organic acids and fatty acids that were perturbed between the studied groups. Interestingly, bevacizumab treatment was able to partially restore some of the cancer-induced metabolic disturbances, indicating its potential therapeutic efficacy via improving the tumor vasculature and nutrient delivery. Besides, pathway analysis of the differential metabolites identified key metabolic pathways affected by bevacizumab, which included valine, leucine and isoleucine metabolism, pyruvate metabolism and butanoate metabolism. However, little effects were observed on lipid metabolites such as palmitic acid and stearic acid and consequently their related metabolic pathways such as fatty acid biosynthesis metabolism suggesting that bevacizumab has more prominent effect on energy and amino acid metabolisms as compared to fatty acid metabolism in colon cancer rats. Overall, our study provided novel insights into the metabolic mechanisms underlying the therapeutic effects of bevacizumab in colon cancer rats via the use of a comprehensive GC-MS metabolomics approach.</p>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpba.2024.116562\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116562","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
GC-MS and multivariate analysis reveal partial serum metabolome restoration by bevacizumab in a colon cancer rat model: An untargeted metabolomics investigation.
Bevacizumab is an anti-angiogenic therapeutic agent that targets vascular endothelial growth factor (VEGF) and has been approved for the treatment of several types of cancer, including colon cancer. Herein, a GC-MS based metabolomics approach was employed to investigate the impact of bevacizumab on the serum metabolome of colon cancer rats. Multivariate chemometric analysis models such as PCA and PLS-DA showed a clear separation between the control, cancer and bevacizumab-treated groups, suggesting that bevacizumab administration induced significant metabolic alterations. Furthermore, pairwise comparisons between the studied groups using the OPLS-DA model in addition to univariate analysis identified several discriminatory metabolites belonged to various chemical classes including amino acids, organic acids and fatty acids that were perturbed between the studied groups. Interestingly, bevacizumab treatment was able to partially restore some of the cancer-induced metabolic disturbances, indicating its potential therapeutic efficacy via improving the tumor vasculature and nutrient delivery. Besides, pathway analysis of the differential metabolites identified key metabolic pathways affected by bevacizumab, which included valine, leucine and isoleucine metabolism, pyruvate metabolism and butanoate metabolism. However, little effects were observed on lipid metabolites such as palmitic acid and stearic acid and consequently their related metabolic pathways such as fatty acid biosynthesis metabolism suggesting that bevacizumab has more prominent effect on energy and amino acid metabolisms as compared to fatty acid metabolism in colon cancer rats. Overall, our study provided novel insights into the metabolic mechanisms underlying the therapeutic effects of bevacizumab in colon cancer rats via the use of a comprehensive GC-MS metabolomics approach.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.