Sandra Bonfante, Martins Back Netto, Aloir Neri de Oliveira Junior, Khiany Mathias, Richard Simon Machado, Larissa Joaquim, Taina Cidreira, Marina Goulart da Silva, Guilherme Cabreira Daros, Lucinéia Gainski Danielski, Fernanda Gava, Isabela da Silva Lemos, Rafaela Tezza Matiola, Emily Córneo, Josiane Somariva Prophiro, Rafael Mariano de Bitencourt, Carlos Henrique Rocha Catalão, Jaqueline da Silva Generoso, Emílio Luiz Streck, Felipe Dal-Pizzol, Tatiana Barichello, Fabricia Petronilho
{"title":"氧化应激和线粒体功能障碍导致老年大鼠术后认知功能障碍,而这取决于 NLRP3 的激活。","authors":"Sandra Bonfante, Martins Back Netto, Aloir Neri de Oliveira Junior, Khiany Mathias, Richard Simon Machado, Larissa Joaquim, Taina Cidreira, Marina Goulart da Silva, Guilherme Cabreira Daros, Lucinéia Gainski Danielski, Fernanda Gava, Isabela da Silva Lemos, Rafaela Tezza Matiola, Emily Córneo, Josiane Somariva Prophiro, Rafael Mariano de Bitencourt, Carlos Henrique Rocha Catalão, Jaqueline da Silva Generoso, Emílio Luiz Streck, Felipe Dal-Pizzol, Tatiana Barichello, Fabricia Petronilho","doi":"10.1007/s11011-024-01425-5","DOIUrl":null,"url":null,"abstract":"<p><p>Postoperative cognitive dysfunction (POCD), a complication following procedures such as orthopedic surgery, is associated with a worsened prognosis, especially in the elderly population. Several mechanisms have been proposed for communication between the immune system and the brain after surgery. In an experimental tibial fracture (TF) model, we aimed to understand the role of the NLR family pyrin domain containing 3 (NLRP3) on oxidative stress and mitochondrial dysfunction as mechanisms underlying POCD in aged and adult rats. Adult or aged male Wistar rats were subjected to the TF model and received intracerebroventricular saline or MCC950 (140 ng/kg), a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. We followed the control (sham) and TF groups treated with MCC950 or saline for seven days to determine cognitive function and survival. The prefrontal cortex and hippocampus were isolated for NLRP3 evaluation, cytokine analysis, oxidative stress measurements, myeloperoxidase activity, nitric oxide formation, mitochondrial respiratory chain enzymes, and succinate dehydrogenase (SDH) activity. Seven days after TF induction, NLRP3 levels increased in the hippocampus and prefrontal cortex in both ages, showed an enhancement in aged rats compared to adults, and experienced a reversal with MCC950 administration. The administration of MCC950 restored memory, IL-1β and IL-10 levels, nitrite/nitrate, lipid peroxidation in the hippocampus and prefrontal cortex, and preserved catalase activity in the prefrontal cortex in aged rats. At the same age, the complex I activity alteration in both regions and complex II, IV, and SDH in the prefrontal cortex were reversed. In conclusion, NLRP3 activation contributes to POCD development because it is intrinsically involved in mitochondrial dysfunction and oxidative stress after orthopedic surgery in aged rats.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats dependent on NLRP3 activation.\",\"authors\":\"Sandra Bonfante, Martins Back Netto, Aloir Neri de Oliveira Junior, Khiany Mathias, Richard Simon Machado, Larissa Joaquim, Taina Cidreira, Marina Goulart da Silva, Guilherme Cabreira Daros, Lucinéia Gainski Danielski, Fernanda Gava, Isabela da Silva Lemos, Rafaela Tezza Matiola, Emily Córneo, Josiane Somariva Prophiro, Rafael Mariano de Bitencourt, Carlos Henrique Rocha Catalão, Jaqueline da Silva Generoso, Emílio Luiz Streck, Felipe Dal-Pizzol, Tatiana Barichello, Fabricia Petronilho\",\"doi\":\"10.1007/s11011-024-01425-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postoperative cognitive dysfunction (POCD), a complication following procedures such as orthopedic surgery, is associated with a worsened prognosis, especially in the elderly population. Several mechanisms have been proposed for communication between the immune system and the brain after surgery. In an experimental tibial fracture (TF) model, we aimed to understand the role of the NLR family pyrin domain containing 3 (NLRP3) on oxidative stress and mitochondrial dysfunction as mechanisms underlying POCD in aged and adult rats. Adult or aged male Wistar rats were subjected to the TF model and received intracerebroventricular saline or MCC950 (140 ng/kg), a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. We followed the control (sham) and TF groups treated with MCC950 or saline for seven days to determine cognitive function and survival. The prefrontal cortex and hippocampus were isolated for NLRP3 evaluation, cytokine analysis, oxidative stress measurements, myeloperoxidase activity, nitric oxide formation, mitochondrial respiratory chain enzymes, and succinate dehydrogenase (SDH) activity. Seven days after TF induction, NLRP3 levels increased in the hippocampus and prefrontal cortex in both ages, showed an enhancement in aged rats compared to adults, and experienced a reversal with MCC950 administration. The administration of MCC950 restored memory, IL-1β and IL-10 levels, nitrite/nitrate, lipid peroxidation in the hippocampus and prefrontal cortex, and preserved catalase activity in the prefrontal cortex in aged rats. At the same age, the complex I activity alteration in both regions and complex II, IV, and SDH in the prefrontal cortex were reversed. In conclusion, NLRP3 activation contributes to POCD development because it is intrinsically involved in mitochondrial dysfunction and oxidative stress after orthopedic surgery in aged rats.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-024-01425-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01425-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats dependent on NLRP3 activation.
Postoperative cognitive dysfunction (POCD), a complication following procedures such as orthopedic surgery, is associated with a worsened prognosis, especially in the elderly population. Several mechanisms have been proposed for communication between the immune system and the brain after surgery. In an experimental tibial fracture (TF) model, we aimed to understand the role of the NLR family pyrin domain containing 3 (NLRP3) on oxidative stress and mitochondrial dysfunction as mechanisms underlying POCD in aged and adult rats. Adult or aged male Wistar rats were subjected to the TF model and received intracerebroventricular saline or MCC950 (140 ng/kg), a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. We followed the control (sham) and TF groups treated with MCC950 or saline for seven days to determine cognitive function and survival. The prefrontal cortex and hippocampus were isolated for NLRP3 evaluation, cytokine analysis, oxidative stress measurements, myeloperoxidase activity, nitric oxide formation, mitochondrial respiratory chain enzymes, and succinate dehydrogenase (SDH) activity. Seven days after TF induction, NLRP3 levels increased in the hippocampus and prefrontal cortex in both ages, showed an enhancement in aged rats compared to adults, and experienced a reversal with MCC950 administration. The administration of MCC950 restored memory, IL-1β and IL-10 levels, nitrite/nitrate, lipid peroxidation in the hippocampus and prefrontal cortex, and preserved catalase activity in the prefrontal cortex in aged rats. At the same age, the complex I activity alteration in both regions and complex II, IV, and SDH in the prefrontal cortex were reversed. In conclusion, NLRP3 activation contributes to POCD development because it is intrinsically involved in mitochondrial dysfunction and oxidative stress after orthopedic surgery in aged rats.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.