{"title":"SWI/SNF 缺陷肿瘤--形态学、免疫表型、遗传学、表观遗传学、命名学和治疗。","authors":"Chi Sing Ng, Jilong Qin","doi":"10.1016/j.labinv.2024.102185","DOIUrl":null,"url":null,"abstract":"<p><p>About 20% of human cancers harbor mutations of genes encoding SWI/SNF (Switch/Sucrose Non-Fermentable) complex subunits. Deficiency of subunits of the complex is present in 10% non-small cell lung cancers (NSCLC; SMARCA4/SMARCA2 deficient), 100% thoracic SMARCA4/A2 deficient undifferentiated tumors (TSADUDT; SMARCA4/A2 deficient), malignant rhabdoid tumor (MRT) and atypical/teratoid tumor (AT/RT) (SMARCB1 deficient), >90% of small cell carcinoma of the ovary, hypercalcemic type (SCCOHT; SMARCA4/SMARCA2 deficient), frequently in undifferentiated/dedifferentiated endometrial carcinoma (UDEC/DDEC; SMARCA4, SMARCA2, SMARCB1, ARID1A/B deficient), 100% SMARCA4 deficient undifferentiated uterine sarcoma (SDUS; SMARCA4 deficient); and in various other tumors from multifarious anatomic sites. Silencing of SWI/SNF gene expression may be genomically or epigenetically driven, causing loss of tumor suppression function or facilitating other oncogenic events. The SWI/SNF deficient tumors share the phenotype of poor or no differentiation, often with a variable component of rhabdoid tumor cells. They present at advanced stages with poor prognosis. Rhabdoid tumor cell phenotype is a useful feature to prompt investigation for this group of tumors. In the thoracic space, the overlap in morphology, immunophenotype, genetics, and epigenetics of SMARCA4/A2 deficient NSCLC and TSADUDT appears more significant. This raises a possible nosological relationship between TSADUDT and SMARCA4/A2 deficient NSCLC. Increased understanding of the genetics, epigenetics, and mechanisms of oncogenesis in these poor prognostic tumors, which are often resistant to conventional treatment, opens a new horizon of therapy for the tumors.</p>","PeriodicalId":17930,"journal":{"name":"Laboratory Investigation","volume":" ","pages":"102185"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SWI/SNF deficient tumors - morphology, immunophenotype, genetics, epigenetics, nosology and therapy.\",\"authors\":\"Chi Sing Ng, Jilong Qin\",\"doi\":\"10.1016/j.labinv.2024.102185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>About 20% of human cancers harbor mutations of genes encoding SWI/SNF (Switch/Sucrose Non-Fermentable) complex subunits. Deficiency of subunits of the complex is present in 10% non-small cell lung cancers (NSCLC; SMARCA4/SMARCA2 deficient), 100% thoracic SMARCA4/A2 deficient undifferentiated tumors (TSADUDT; SMARCA4/A2 deficient), malignant rhabdoid tumor (MRT) and atypical/teratoid tumor (AT/RT) (SMARCB1 deficient), >90% of small cell carcinoma of the ovary, hypercalcemic type (SCCOHT; SMARCA4/SMARCA2 deficient), frequently in undifferentiated/dedifferentiated endometrial carcinoma (UDEC/DDEC; SMARCA4, SMARCA2, SMARCB1, ARID1A/B deficient), 100% SMARCA4 deficient undifferentiated uterine sarcoma (SDUS; SMARCA4 deficient); and in various other tumors from multifarious anatomic sites. Silencing of SWI/SNF gene expression may be genomically or epigenetically driven, causing loss of tumor suppression function or facilitating other oncogenic events. The SWI/SNF deficient tumors share the phenotype of poor or no differentiation, often with a variable component of rhabdoid tumor cells. They present at advanced stages with poor prognosis. Rhabdoid tumor cell phenotype is a useful feature to prompt investigation for this group of tumors. In the thoracic space, the overlap in morphology, immunophenotype, genetics, and epigenetics of SMARCA4/A2 deficient NSCLC and TSADUDT appears more significant. This raises a possible nosological relationship between TSADUDT and SMARCA4/A2 deficient NSCLC. Increased understanding of the genetics, epigenetics, and mechanisms of oncogenesis in these poor prognostic tumors, which are often resistant to conventional treatment, opens a new horizon of therapy for the tumors.</p>\",\"PeriodicalId\":17930,\"journal\":{\"name\":\"Laboratory Investigation\",\"volume\":\" \",\"pages\":\"102185\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.labinv.2024.102185\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.labinv.2024.102185","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
About 20% of human cancers harbor mutations of genes encoding SWI/SNF (Switch/Sucrose Non-Fermentable) complex subunits. Deficiency of subunits of the complex is present in 10% non-small cell lung cancers (NSCLC; SMARCA4/SMARCA2 deficient), 100% thoracic SMARCA4/A2 deficient undifferentiated tumors (TSADUDT; SMARCA4/A2 deficient), malignant rhabdoid tumor (MRT) and atypical/teratoid tumor (AT/RT) (SMARCB1 deficient), >90% of small cell carcinoma of the ovary, hypercalcemic type (SCCOHT; SMARCA4/SMARCA2 deficient), frequently in undifferentiated/dedifferentiated endometrial carcinoma (UDEC/DDEC; SMARCA4, SMARCA2, SMARCB1, ARID1A/B deficient), 100% SMARCA4 deficient undifferentiated uterine sarcoma (SDUS; SMARCA4 deficient); and in various other tumors from multifarious anatomic sites. Silencing of SWI/SNF gene expression may be genomically or epigenetically driven, causing loss of tumor suppression function or facilitating other oncogenic events. The SWI/SNF deficient tumors share the phenotype of poor or no differentiation, often with a variable component of rhabdoid tumor cells. They present at advanced stages with poor prognosis. Rhabdoid tumor cell phenotype is a useful feature to prompt investigation for this group of tumors. In the thoracic space, the overlap in morphology, immunophenotype, genetics, and epigenetics of SMARCA4/A2 deficient NSCLC and TSADUDT appears more significant. This raises a possible nosological relationship between TSADUDT and SMARCA4/A2 deficient NSCLC. Increased understanding of the genetics, epigenetics, and mechanisms of oncogenesis in these poor prognostic tumors, which are often resistant to conventional treatment, opens a new horizon of therapy for the tumors.
期刊介绍:
Laboratory Investigation is an international journal owned by the United States and Canadian Academy of Pathology. Laboratory Investigation offers prompt publication of high-quality original research in all biomedical disciplines relating to the understanding of human disease and the application of new methods to the diagnosis of disease. Both human and experimental studies are welcome.