在整个角膜上局部使用银纳米颗粒的体内评估:傅立叶变换红外综合研究。

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2024-12-01 Epub Date: 2024-11-12 DOI:10.1080/17435390.2024.2426548
Sherif S Mahmoud, Amira E Ibrahim, Magda S Hanafy
{"title":"在整个角膜上局部使用银纳米颗粒的体内评估:傅立叶变换红外综合研究。","authors":"Sherif S Mahmoud, Amira E Ibrahim, Magda S Hanafy","doi":"10.1080/17435390.2024.2426548","DOIUrl":null,"url":null,"abstract":"<p><p>Silver nanoparticles (AgNPs) have gained attention in medicine for their potent antibacterial, antiviral, and anti-inflammatory properties. The use of silver nanoparticles in ophthalmic solutions raises concerns regarding potential toxicity of nanoparticles to ocular tissues, such as the cornea, conjunctiva, and retina, which necessitates further toxicity assessments aiding in the development of safer ophthalmic solutions. This study investigates the impact of AgNPs on corneal tissue using ophthalmic investigations, Fourier transform infrared (FTIR) spectroscopy, and chemometric analyses. Three concentrations of AgNPs (0.48 µg/mL, 7.2 µg/mL, and 15.5 µg/mL) were topically applied twice daily for 10 days, synthesized biologically by reducing silver nitrate with almond kernels water extract. Corneas, obtained by cutting 2-3 mm below the ora serrata, were analyzed with FTIR spectroscopy and subjected to chemometric analyses. Results reveal AgNPs' influence on constituents with OH and NH groups, affecting corneal lipids and reducing the lipid saturation index. AgNPs alter both bulk and interfacial water, leading to changes in corneal hydration thus modifying corneal physico-chemical properties. The influence extends to the water environment around proteins and lipids, releasing bound water from phospholipids and disrupting hydrogen bonding networks around proteins. In conclusion, the applied AgNPs concentrations can be linked to dry eye onset.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"661-677"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vivo</i> assessment of topically applied silver nanoparticles on entire cornea: comprehensive FTIR study.\",\"authors\":\"Sherif S Mahmoud, Amira E Ibrahim, Magda S Hanafy\",\"doi\":\"10.1080/17435390.2024.2426548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silver nanoparticles (AgNPs) have gained attention in medicine for their potent antibacterial, antiviral, and anti-inflammatory properties. The use of silver nanoparticles in ophthalmic solutions raises concerns regarding potential toxicity of nanoparticles to ocular tissues, such as the cornea, conjunctiva, and retina, which necessitates further toxicity assessments aiding in the development of safer ophthalmic solutions. This study investigates the impact of AgNPs on corneal tissue using ophthalmic investigations, Fourier transform infrared (FTIR) spectroscopy, and chemometric analyses. Three concentrations of AgNPs (0.48 µg/mL, 7.2 µg/mL, and 15.5 µg/mL) were topically applied twice daily for 10 days, synthesized biologically by reducing silver nitrate with almond kernels water extract. Corneas, obtained by cutting 2-3 mm below the ora serrata, were analyzed with FTIR spectroscopy and subjected to chemometric analyses. Results reveal AgNPs' influence on constituents with OH and NH groups, affecting corneal lipids and reducing the lipid saturation index. AgNPs alter both bulk and interfacial water, leading to changes in corneal hydration thus modifying corneal physico-chemical properties. The influence extends to the water environment around proteins and lipids, releasing bound water from phospholipids and disrupting hydrogen bonding networks around proteins. In conclusion, the applied AgNPs concentrations can be linked to dry eye onset.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"661-677\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2426548\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2426548","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

银纳米粒子(AgNPs)因其强大的抗菌、抗病毒和消炎特性而在医学界备受关注。在眼科溶液中使用银纳米粒子引起了人们对纳米粒子对角膜、结膜和视网膜等眼部组织的潜在毒性的关注,因此有必要进行进一步的毒性评估,以帮助开发更安全的眼科溶液。本研究利用眼科调查、傅立叶变换红外光谱(FTIR)和化学计量分析来研究 AgNPs 对角膜组织的影响。三种浓度的 AgNPs(0.48 微克/毫升、7.2 微克/毫升和 15.5 微克/毫升)每天外用两次,持续 10 天,这些 AgNPs 是用杏仁核水提取物还原硝酸银而生物合成的。用傅里叶变换红外光谱分析角膜,并对角膜进行化学计量学分析。结果表明,AgNPs 会影响带有 OH 和 NH 基团的成分,影响角膜脂质并降低脂质饱和度指数。AgNPs 会改变角膜的体积水和界面水,导致角膜水合作用发生变化,从而改变角膜的物理化学特性。这种影响延伸到蛋白质和脂质周围的水环境,释放磷脂中的结合水,破坏蛋白质周围的氢键网络。总之,所应用的 AgNPs 浓度与干眼症的发病有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo assessment of topically applied silver nanoparticles on entire cornea: comprehensive FTIR study.

Silver nanoparticles (AgNPs) have gained attention in medicine for their potent antibacterial, antiviral, and anti-inflammatory properties. The use of silver nanoparticles in ophthalmic solutions raises concerns regarding potential toxicity of nanoparticles to ocular tissues, such as the cornea, conjunctiva, and retina, which necessitates further toxicity assessments aiding in the development of safer ophthalmic solutions. This study investigates the impact of AgNPs on corneal tissue using ophthalmic investigations, Fourier transform infrared (FTIR) spectroscopy, and chemometric analyses. Three concentrations of AgNPs (0.48 µg/mL, 7.2 µg/mL, and 15.5 µg/mL) were topically applied twice daily for 10 days, synthesized biologically by reducing silver nitrate with almond kernels water extract. Corneas, obtained by cutting 2-3 mm below the ora serrata, were analyzed with FTIR spectroscopy and subjected to chemometric analyses. Results reveal AgNPs' influence on constituents with OH and NH groups, affecting corneal lipids and reducing the lipid saturation index. AgNPs alter both bulk and interfacial water, leading to changes in corneal hydration thus modifying corneal physico-chemical properties. The influence extends to the water environment around proteins and lipids, releasing bound water from phospholipids and disrupting hydrogen bonding networks around proteins. In conclusion, the applied AgNPs concentrations can be linked to dry eye onset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Plastic nanoparticle toxicity is accentuated in the immune-competent inflamed intestinal tri-culture cell model. Probing the effects of dextran-coated CeO2 nanoparticles on lung fibroblasts using multivariate single-cell Raman spectroscopy. Toxicological impact of silver nanoparticles on soil microbial indicators in contaminated soil (pot experiment). On how titanium dioxide nanoparticles attenuate the toxicity of mercuric chloride to Artemia salina: investigation of fatty acid composition, oxidative stress, and lipid peroxidation. Quercetin protective potential against nanoparticle-induced adverse effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1