Bin Zhou, Chao Hu, Haoyang Li, Xiangyi Ye, Baohua Wen, Zhangkai Zhou, Jingxuan Cai, Jianhua Zhou
{"title":"用于增强免疫测定的缺陷不敏感圆柱表面晶格共振阵列及其批量复制。","authors":"Bin Zhou, Chao Hu, Haoyang Li, Xiangyi Ye, Baohua Wen, Zhangkai Zhou, Jingxuan Cai, Jianhua Zhou","doi":"10.1038/s41378-024-00793-3","DOIUrl":null,"url":null,"abstract":"<p><p>Surface lattice resonances (SLR) have been demonstrated to enhance the sensitivity and reduce the full width at half maximum (FWHM) of the plasmonic resonances. However, their widespread application in immunoassays has been hindered by limitations of high structural defect sensitivity and fabrication costs. Here, we design a novel three-layer cylindrical SLR array that exhibits high tolerance against structural defects, which would facilitate straightforward fabrication. By integrating metal evaporation and nanoimprint lithography, we demonstrate the replication of the SLR array with exceptional quality. Theoretical simulations indicate that the resonance dips of these arrays exhibit are not sensitive to various structural defects. The experimental results reveal that the FWHM of these arrays can be as low as 5.1 nm while maintaining robust resonance characteristics. Furthermore, we demonstrated the high spectral sensitivity of the SLR array, which enabled the detection of immunoglobulin G (IgG) at concentrations as low as 609 pg/mL. These findings emphasize the potential of the defect-insensitive SLR array as a highly scalable immunoassay platform with exceptional performance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"168"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay.\",\"authors\":\"Bin Zhou, Chao Hu, Haoyang Li, Xiangyi Ye, Baohua Wen, Zhangkai Zhou, Jingxuan Cai, Jianhua Zhou\",\"doi\":\"10.1038/s41378-024-00793-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface lattice resonances (SLR) have been demonstrated to enhance the sensitivity and reduce the full width at half maximum (FWHM) of the plasmonic resonances. However, their widespread application in immunoassays has been hindered by limitations of high structural defect sensitivity and fabrication costs. Here, we design a novel three-layer cylindrical SLR array that exhibits high tolerance against structural defects, which would facilitate straightforward fabrication. By integrating metal evaporation and nanoimprint lithography, we demonstrate the replication of the SLR array with exceptional quality. Theoretical simulations indicate that the resonance dips of these arrays exhibit are not sensitive to various structural defects. The experimental results reveal that the FWHM of these arrays can be as low as 5.1 nm while maintaining robust resonance characteristics. Furthermore, we demonstrated the high spectral sensitivity of the SLR array, which enabled the detection of immunoglobulin G (IgG) at concentrations as low as 609 pg/mL. These findings emphasize the potential of the defect-insensitive SLR array as a highly scalable immunoassay platform with exceptional performance.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"168\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00793-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00793-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay.
Surface lattice resonances (SLR) have been demonstrated to enhance the sensitivity and reduce the full width at half maximum (FWHM) of the plasmonic resonances. However, their widespread application in immunoassays has been hindered by limitations of high structural defect sensitivity and fabrication costs. Here, we design a novel three-layer cylindrical SLR array that exhibits high tolerance against structural defects, which would facilitate straightforward fabrication. By integrating metal evaporation and nanoimprint lithography, we demonstrate the replication of the SLR array with exceptional quality. Theoretical simulations indicate that the resonance dips of these arrays exhibit are not sensitive to various structural defects. The experimental results reveal that the FWHM of these arrays can be as low as 5.1 nm while maintaining robust resonance characteristics. Furthermore, we demonstrated the high spectral sensitivity of the SLR array, which enabled the detection of immunoglobulin G (IgG) at concentrations as low as 609 pg/mL. These findings emphasize the potential of the defect-insensitive SLR array as a highly scalable immunoassay platform with exceptional performance.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.