Sakika Kimura, Hidehiko Suzuki, Yu Hatakeyama, Takafumi Noguchi, Koga Ii, Kazumasa Nakamura, Hirotaka Ebina, Eiji Morita
{"title":"人类 Parvovirus B19 表位蛋白纳米颗粒诱导的高效中和抗体","authors":"Sakika Kimura, Hidehiko Suzuki, Yu Hatakeyama, Takafumi Noguchi, Koga Ii, Kazumasa Nakamura, Hirotaka Ebina, Eiji Morita","doi":"10.1111/1348-0421.13182","DOIUrl":null,"url":null,"abstract":"<p><p>Human parvovirus B19 (B19V) causes fetal hydrops in pregnant women. Despite the significant impact of this virus, effective vaccines remain unclear. In this study, we successfully engineered B19V protein nanoparticles by fusing the N-terminal receptor-binding domain corresponding to 5-80 amino acids of VP1 with two distinct types of self-assembling protein nanoparticles. Gel filtration and electron microscopic analysis confirmed the spherical assembly of the antigen-fused nanoparticles. The purified nanoparticles are efficiently bound to the surface of UT7/Epo-S1 cells, which are semi-permissive hosts for B19V infection. Immunization of BALB/c mice with VP1u 5-80 nanoparticles elicited a robust production of B19V-specific IgG antibodies compared to single VP1u 5-80 peptides. Moreover, a neutralization assay using B19V derived from a blood donor sample revealed that antibodies from mice immunized with VP1u 5-80 nanoparticles exhibited stronger infection-neutralizing activity. These findings suggest that nanoparticle formation plays a crucial role in enhancing the immunogenicity of the B19V VP1u 5-80 amino acid peptide and that these nanoparticles could serve as promising vaccine candidates, effectively inducing immunity against B19V.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Neutralizing Antibodies Induction by Human Parvovirus B19 Epitope-Presenting Protein Nanoparticles.\",\"authors\":\"Sakika Kimura, Hidehiko Suzuki, Yu Hatakeyama, Takafumi Noguchi, Koga Ii, Kazumasa Nakamura, Hirotaka Ebina, Eiji Morita\",\"doi\":\"10.1111/1348-0421.13182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human parvovirus B19 (B19V) causes fetal hydrops in pregnant women. Despite the significant impact of this virus, effective vaccines remain unclear. In this study, we successfully engineered B19V protein nanoparticles by fusing the N-terminal receptor-binding domain corresponding to 5-80 amino acids of VP1 with two distinct types of self-assembling protein nanoparticles. Gel filtration and electron microscopic analysis confirmed the spherical assembly of the antigen-fused nanoparticles. The purified nanoparticles are efficiently bound to the surface of UT7/Epo-S1 cells, which are semi-permissive hosts for B19V infection. Immunization of BALB/c mice with VP1u 5-80 nanoparticles elicited a robust production of B19V-specific IgG antibodies compared to single VP1u 5-80 peptides. Moreover, a neutralization assay using B19V derived from a blood donor sample revealed that antibodies from mice immunized with VP1u 5-80 nanoparticles exhibited stronger infection-neutralizing activity. These findings suggest that nanoparticle formation plays a crucial role in enhancing the immunogenicity of the B19V VP1u 5-80 amino acid peptide and that these nanoparticles could serve as promising vaccine candidates, effectively inducing immunity against B19V.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1348-0421.13182\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Efficient Neutralizing Antibodies Induction by Human Parvovirus B19 Epitope-Presenting Protein Nanoparticles.
Human parvovirus B19 (B19V) causes fetal hydrops in pregnant women. Despite the significant impact of this virus, effective vaccines remain unclear. In this study, we successfully engineered B19V protein nanoparticles by fusing the N-terminal receptor-binding domain corresponding to 5-80 amino acids of VP1 with two distinct types of self-assembling protein nanoparticles. Gel filtration and electron microscopic analysis confirmed the spherical assembly of the antigen-fused nanoparticles. The purified nanoparticles are efficiently bound to the surface of UT7/Epo-S1 cells, which are semi-permissive hosts for B19V infection. Immunization of BALB/c mice with VP1u 5-80 nanoparticles elicited a robust production of B19V-specific IgG antibodies compared to single VP1u 5-80 peptides. Moreover, a neutralization assay using B19V derived from a blood donor sample revealed that antibodies from mice immunized with VP1u 5-80 nanoparticles exhibited stronger infection-neutralizing activity. These findings suggest that nanoparticle formation plays a crucial role in enhancing the immunogenicity of the B19V VP1u 5-80 amino acid peptide and that these nanoparticles could serve as promising vaccine candidates, effectively inducing immunity against B19V.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.