2'-Fluorinated nucleoside chemistry for new drug discovery: achievements and prospects.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-10-01 DOI:10.1093/nsr/nwae331
Yonggang Meng, Nannan Sun, Lan Liang, Bin Yu, Junbiao Chang
{"title":"2'-Fluorinated nucleoside chemistry for new drug discovery: achievements and prospects.","authors":"Yonggang Meng, Nannan Sun, Lan Liang, Bin Yu, Junbiao Chang","doi":"10.1093/nsr/nwae331","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorinated nucleosides are an important class of modified nucleosides that have demonstrated therapeutic potential for treating various human diseases, especially viral infections and cancer. Many fluorinated nucleosides have advanced into clinical trials or have been approved by the FDA for use in patients. Among these fluorinated nucleosides, azvudine, developed by us, has been officially approved by the National Medical Products Administration for the treatment of coronavirus disease 2019 (COVID-19) and human immunodeficiency virus, indicating the therapeutic promise of fluorinated nucleosides. In view of the therapeutic promise of fluorinated nucleosides for antiviral and anticancer therapy, in this Review we will provide a comprehensive overview of well-established 2'-fluorinated nucleosides approved for use in the market or those in clinical stages for antiviral and antitumor therapies, highlighting the drug discovery strategies, structure-activity relationship studies, mechanisms of action, and preclinical/clinical studies and also discuss the challenges and future directions for nucleoside-based new drug discovery.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 10","pages":"nwae331"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546638/pdf/","citationCount":"0","resultStr":"{\"title\":\"2'-Fluorinated nucleoside chemistry for new drug discovery: achievements and prospects.\",\"authors\":\"Yonggang Meng, Nannan Sun, Lan Liang, Bin Yu, Junbiao Chang\",\"doi\":\"10.1093/nsr/nwae331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorinated nucleosides are an important class of modified nucleosides that have demonstrated therapeutic potential for treating various human diseases, especially viral infections and cancer. Many fluorinated nucleosides have advanced into clinical trials or have been approved by the FDA for use in patients. Among these fluorinated nucleosides, azvudine, developed by us, has been officially approved by the National Medical Products Administration for the treatment of coronavirus disease 2019 (COVID-19) and human immunodeficiency virus, indicating the therapeutic promise of fluorinated nucleosides. In view of the therapeutic promise of fluorinated nucleosides for antiviral and anticancer therapy, in this Review we will provide a comprehensive overview of well-established 2'-fluorinated nucleosides approved for use in the market or those in clinical stages for antiviral and antitumor therapies, highlighting the drug discovery strategies, structure-activity relationship studies, mechanisms of action, and preclinical/clinical studies and also discuss the challenges and future directions for nucleoside-based new drug discovery.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"11 10\",\"pages\":\"nwae331\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae331\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae331","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氟化核苷是一类重要的改性核苷,在治疗各种人类疾病,特别是病毒感染和癌症方面具有治疗潜力。许多含氟核苷类药物已进入临床试验阶段,或已获美国食品及药物管理局批准用于患者。在这些含氟核苷中,我们开发的阿兹夫定已获得国家医药产品管理局的正式批准,用于治疗 2019 年冠状病毒病(COVID-19)和人类免疫缺陷病毒,这表明含氟核苷具有治疗前景。鉴于含氟核苷在抗病毒和抗肿瘤治疗中的治疗前景,在本综述中,我们将全面概述已批准上市或处于临床阶段的成熟的2'-含氟核苷在抗病毒和抗肿瘤治疗中的应用,重点介绍药物发现策略、结构-活性关系研究、作用机制和临床前/临床研究,并讨论基于核苷的新药发现所面临的挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2'-Fluorinated nucleoside chemistry for new drug discovery: achievements and prospects.

Fluorinated nucleosides are an important class of modified nucleosides that have demonstrated therapeutic potential for treating various human diseases, especially viral infections and cancer. Many fluorinated nucleosides have advanced into clinical trials or have been approved by the FDA for use in patients. Among these fluorinated nucleosides, azvudine, developed by us, has been officially approved by the National Medical Products Administration for the treatment of coronavirus disease 2019 (COVID-19) and human immunodeficiency virus, indicating the therapeutic promise of fluorinated nucleosides. In view of the therapeutic promise of fluorinated nucleosides for antiviral and anticancer therapy, in this Review we will provide a comprehensive overview of well-established 2'-fluorinated nucleosides approved for use in the market or those in clinical stages for antiviral and antitumor therapies, highlighting the drug discovery strategies, structure-activity relationship studies, mechanisms of action, and preclinical/clinical studies and also discuss the challenges and future directions for nucleoside-based new drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
Origin of sulfate in post-snowball-Earth oceans: river inputs vs. shelf-derived H2S. Contribution of irrigation to the production of maize, wheat, and rice in the major global producing countries. Fossil evidence for silica biomineralization in Permian lycophytes. Shaping the future of fiber technology: exploring functional and smart innovations. The search for life signatures on Mars by the Tianwen-3 Mars sample return mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1