可逆凝胶辅助、常压干燥、多功能、阻燃生物质气凝胶,具有智能高强度-弹性转换功能。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-10-15 eCollection Date: 2024-11-01 DOI:10.1093/nsr/nwae360
Ting Wang, Ying-Jiao Zhan, Ming-Jun Chen, Lei He, Wen-Li An, Shimei Xu, Wei Wang, Jian-Jun Shi, Hai-Bo Zhao, Yu-Zhong Wang
{"title":"可逆凝胶辅助、常压干燥、多功能、阻燃生物质气凝胶,具有智能高强度-弹性转换功能。","authors":"Ting Wang, Ying-Jiao Zhan, Ming-Jun Chen, Lei He, Wen-Li An, Shimei Xu, Wei Wang, Jian-Jun Shi, Hai-Bo Zhao, Yu-Zhong Wang","doi":"10.1093/nsr/nwae360","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-based aerogels, which are poised as compelling thermal insulators, demand intricate synthesis procedures and have limited durability under harsh conditions. The integration of smart stimuli-response transitions in biomass aerogels holds promise as a solution, yet remains a challenge. Here, we introduce a pioneering strategy that employs reversible-gel-assisted ambient-pressure drying without organic solvents to craft multifunctional bio-based aerogels. By exploiting the thermally reversible gelling propensity of select biomasses, we anchor emulsified bubbles within cross-linked hydrogels, circumventing surface tension issues during mild drying. The resultant aerogels feature a robust porous matrix that is imbued with stable bubbles, yielding low thermal conductivity, high flame retardancy and robust resistance to diverse rigors. This innovative approach facilitates a paradigm shift in intelligent fire protection in which aerogels transition from robust to flexible in response to water stimuli, effectively shielding against thermal hazards and external forces. This work opens up a facile, eco-friendly and mild way to fabricate advanced biomass aerogels with stimuli-responsive transformation.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae360"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558063/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reversible-gel-assisted, ambient-pressure-dried, multifunctional, flame-retardant biomass aerogels with smart high-strength-elasticity transformation.\",\"authors\":\"Ting Wang, Ying-Jiao Zhan, Ming-Jun Chen, Lei He, Wen-Li An, Shimei Xu, Wei Wang, Jian-Jun Shi, Hai-Bo Zhao, Yu-Zhong Wang\",\"doi\":\"10.1093/nsr/nwae360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bio-based aerogels, which are poised as compelling thermal insulators, demand intricate synthesis procedures and have limited durability under harsh conditions. The integration of smart stimuli-response transitions in biomass aerogels holds promise as a solution, yet remains a challenge. Here, we introduce a pioneering strategy that employs reversible-gel-assisted ambient-pressure drying without organic solvents to craft multifunctional bio-based aerogels. By exploiting the thermally reversible gelling propensity of select biomasses, we anchor emulsified bubbles within cross-linked hydrogels, circumventing surface tension issues during mild drying. The resultant aerogels feature a robust porous matrix that is imbued with stable bubbles, yielding low thermal conductivity, high flame retardancy and robust resistance to diverse rigors. This innovative approach facilitates a paradigm shift in intelligent fire protection in which aerogels transition from robust to flexible in response to water stimuli, effectively shielding against thermal hazards and external forces. This work opens up a facile, eco-friendly and mild way to fabricate advanced biomass aerogels with stimuli-responsive transformation.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"11 11\",\"pages\":\"nwae360\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae360\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae360","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物基气凝胶有望成为引人注目的隔热材料,但需要复杂的合成程序,而且在恶劣条件下的耐久性有限。在生物质气凝胶中整合智能刺激-反应转换技术有望成为一种解决方案,但这仍是一项挑战。在这里,我们介绍了一种开创性的策略,即利用可逆凝胶辅助常温加压干燥技术,在不使用有机溶剂的情况下制作多功能生物基气凝胶。通过利用特定生物质的热可逆胶凝倾向,我们将乳化气泡锚定在交联水凝胶中,从而避免了温和干燥过程中的表面张力问题。由此产生的气凝胶具有坚固的多孔基质,基质中充满了稳定的气泡,具有低导热性、高阻燃性和对各种严酷条件的强大抵抗力。这种创新方法促进了智能防火模式的转变,使气凝胶在水的刺激下从坚固变为柔韧,有效抵御热危害和外力。这项工作开辟了一种简便、环保、温和的方法,用于制造具有刺激响应转变功能的先进生物质气凝胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reversible-gel-assisted, ambient-pressure-dried, multifunctional, flame-retardant biomass aerogels with smart high-strength-elasticity transformation.

Bio-based aerogels, which are poised as compelling thermal insulators, demand intricate synthesis procedures and have limited durability under harsh conditions. The integration of smart stimuli-response transitions in biomass aerogels holds promise as a solution, yet remains a challenge. Here, we introduce a pioneering strategy that employs reversible-gel-assisted ambient-pressure drying without organic solvents to craft multifunctional bio-based aerogels. By exploiting the thermally reversible gelling propensity of select biomasses, we anchor emulsified bubbles within cross-linked hydrogels, circumventing surface tension issues during mild drying. The resultant aerogels feature a robust porous matrix that is imbued with stable bubbles, yielding low thermal conductivity, high flame retardancy and robust resistance to diverse rigors. This innovative approach facilitates a paradigm shift in intelligent fire protection in which aerogels transition from robust to flexible in response to water stimuli, effectively shielding against thermal hazards and external forces. This work opens up a facile, eco-friendly and mild way to fabricate advanced biomass aerogels with stimuli-responsive transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
Origin of sulfate in post-snowball-Earth oceans: river inputs vs. shelf-derived H2S. Contribution of irrigation to the production of maize, wheat, and rice in the major global producing countries. Fossil evidence for silica biomineralization in Permian lycophytes. Shaping the future of fiber technology: exploring functional and smart innovations. The search for life signatures on Mars by the Tianwen-3 Mars sample return mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1