Maria Pombal, Ismael Marcet, Manuel Rendueles, Mario Diaz
{"title":"乳化剂:乳化剂:它们对工业巧克力流变和质构特性的影响","authors":"Maria Pombal, Ismael Marcet, Manuel Rendueles, Mario Diaz","doi":"10.3390/molecules29215185","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of the chocolate matrix leads to it having characteristic rheological properties that may pose difficulties for its industrial manufacture. Many factors influence the flow behaviour of chocolates, such as raw materials, the amount of fat, the moisture content, particle-size distribution, the concentration of emulsifiers, or manufacturing conditions, among others. This study focusses on the rheological properties of an industrially manufactured chocolate with a 48% cocoa content, and the effect caused by the addition of two emulsifiers (soya lecithin and polyglycerol polyricinoleate (PGPR)) on the rheological properties. In the case of lecithin, a clear effect has been observed on the plastic viscosity and the yield stress. Plastic viscosity decreases until a concentration of 0.6% lecithin is reached, and thereafter remains relatively constant, while yield stress increases over the studied range. This effect is not observed when PGPR is used as the emulsifying agent. In this case, a small concentration of PGPR decreases the yield stress. Thixotropy was determined using the Casson model, and its behaviour was found to be similar to that of plastic viscosity with respect to changes in the PGPR and lecithin concentrations. Textural determinations were also carried out, relating the rheology characteristics to the texturometry.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emulsifiers: Their Influence on the Rheological and Texture Properties in an Industrial Chocolate.\",\"authors\":\"Maria Pombal, Ismael Marcet, Manuel Rendueles, Mario Diaz\",\"doi\":\"10.3390/molecules29215185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complexity of the chocolate matrix leads to it having characteristic rheological properties that may pose difficulties for its industrial manufacture. Many factors influence the flow behaviour of chocolates, such as raw materials, the amount of fat, the moisture content, particle-size distribution, the concentration of emulsifiers, or manufacturing conditions, among others. This study focusses on the rheological properties of an industrially manufactured chocolate with a 48% cocoa content, and the effect caused by the addition of two emulsifiers (soya lecithin and polyglycerol polyricinoleate (PGPR)) on the rheological properties. In the case of lecithin, a clear effect has been observed on the plastic viscosity and the yield stress. Plastic viscosity decreases until a concentration of 0.6% lecithin is reached, and thereafter remains relatively constant, while yield stress increases over the studied range. This effect is not observed when PGPR is used as the emulsifying agent. In this case, a small concentration of PGPR decreases the yield stress. Thixotropy was determined using the Casson model, and its behaviour was found to be similar to that of plastic viscosity with respect to changes in the PGPR and lecithin concentrations. Textural determinations were also carried out, relating the rheology characteristics to the texturometry.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"29 21\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29215185\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215185","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Emulsifiers: Their Influence on the Rheological and Texture Properties in an Industrial Chocolate.
The complexity of the chocolate matrix leads to it having characteristic rheological properties that may pose difficulties for its industrial manufacture. Many factors influence the flow behaviour of chocolates, such as raw materials, the amount of fat, the moisture content, particle-size distribution, the concentration of emulsifiers, or manufacturing conditions, among others. This study focusses on the rheological properties of an industrially manufactured chocolate with a 48% cocoa content, and the effect caused by the addition of two emulsifiers (soya lecithin and polyglycerol polyricinoleate (PGPR)) on the rheological properties. In the case of lecithin, a clear effect has been observed on the plastic viscosity and the yield stress. Plastic viscosity decreases until a concentration of 0.6% lecithin is reached, and thereafter remains relatively constant, while yield stress increases over the studied range. This effect is not observed when PGPR is used as the emulsifying agent. In this case, a small concentration of PGPR decreases the yield stress. Thixotropy was determined using the Casson model, and its behaviour was found to be similar to that of plastic viscosity with respect to changes in the PGPR and lecithin concentrations. Textural determinations were also carried out, relating the rheology characteristics to the texturometry.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.