Yaxin An, Fu Li, Youbo Di, Xiangbing Zhang, Jianjun Lu, Le Wang, Zhifeng Yan, Wei Wang, Mei Liu, Pengfei Fei
{"title":"醋酸纤维素的疏水改性及其在水处理领域的应用:综述。","authors":"Yaxin An, Fu Li, Youbo Di, Xiangbing Zhang, Jianjun Lu, Le Wang, Zhifeng Yan, Wei Wang, Mei Liu, Pengfei Fei","doi":"10.3390/molecules29215127","DOIUrl":null,"url":null,"abstract":"<p><p>With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review.\",\"authors\":\"Yaxin An, Fu Li, Youbo Di, Xiangbing Zhang, Jianjun Lu, Le Wang, Zhifeng Yan, Wei Wang, Mei Liu, Pengfei Fei\",\"doi\":\"10.3390/molecules29215127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"29 21\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29215127\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215127","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review.
With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.