Sonia Álvarez-García, Lucie Couarraze, María Matos, Gemma Gutiérrez
{"title":"番茄红素乳液:壳聚糖与作为稳定剂的非离子表面活性剂的对比。","authors":"Sonia Álvarez-García, Lucie Couarraze, María Matos, Gemma Gutiérrez","doi":"10.3390/molecules29215209","DOIUrl":null,"url":null,"abstract":"<p><p>Lycopene is a natural carotenoid with well-known benefits due to its antioxidant properties, including an anti-inflammatory effect in colorectal cancer and anti-angiogenic effects along with a reduction in the risk of prostate cancer and coronary heart disease. Due to their poor water solubility, photosensitivity and heat sensitivity, their incorporation in cosmetic and food matrices should be through encapsulation systems. In the present work, lycopene-loaded emulsions were prepared using two different types of stabilizers: non-ionic surfactants, testing several ratios of Tween 80 and Span 80, and chitosan, using chitosans of different viscosities and molecular weights. Soybean oil was found to be a suitable candidate for O/W emulsion preparation. Lycopene encapsulation efficiency (EE) of 70-75% and loading capacities of 0.14 mg/g were registered in stable emulsions stabilized either by non-ionic surfactants or acidified chitosans. Therefore, chitosan is a good alternative as a sustainable stabilizer to partially replace traditional synthetic ingredients with a new biodegradable, renewable and biocompatible material which could contribute to reduce the environmental impact as well as the ingestion of synthetic toxic materials by humans, decreasing their risk of suffering from chronic and complex pathologies, among which several types of cancer stand out.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547727/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lycopene-Loaded Emulsions: Chitosan Versus Non-Ionic Surfactants as Stabilizers.\",\"authors\":\"Sonia Álvarez-García, Lucie Couarraze, María Matos, Gemma Gutiérrez\",\"doi\":\"10.3390/molecules29215209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lycopene is a natural carotenoid with well-known benefits due to its antioxidant properties, including an anti-inflammatory effect in colorectal cancer and anti-angiogenic effects along with a reduction in the risk of prostate cancer and coronary heart disease. Due to their poor water solubility, photosensitivity and heat sensitivity, their incorporation in cosmetic and food matrices should be through encapsulation systems. In the present work, lycopene-loaded emulsions were prepared using two different types of stabilizers: non-ionic surfactants, testing several ratios of Tween 80 and Span 80, and chitosan, using chitosans of different viscosities and molecular weights. Soybean oil was found to be a suitable candidate for O/W emulsion preparation. Lycopene encapsulation efficiency (EE) of 70-75% and loading capacities of 0.14 mg/g were registered in stable emulsions stabilized either by non-ionic surfactants or acidified chitosans. Therefore, chitosan is a good alternative as a sustainable stabilizer to partially replace traditional synthetic ingredients with a new biodegradable, renewable and biocompatible material which could contribute to reduce the environmental impact as well as the ingestion of synthetic toxic materials by humans, decreasing their risk of suffering from chronic and complex pathologies, among which several types of cancer stand out.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"29 21\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29215209\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215209","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lycopene-Loaded Emulsions: Chitosan Versus Non-Ionic Surfactants as Stabilizers.
Lycopene is a natural carotenoid with well-known benefits due to its antioxidant properties, including an anti-inflammatory effect in colorectal cancer and anti-angiogenic effects along with a reduction in the risk of prostate cancer and coronary heart disease. Due to their poor water solubility, photosensitivity and heat sensitivity, their incorporation in cosmetic and food matrices should be through encapsulation systems. In the present work, lycopene-loaded emulsions were prepared using two different types of stabilizers: non-ionic surfactants, testing several ratios of Tween 80 and Span 80, and chitosan, using chitosans of different viscosities and molecular weights. Soybean oil was found to be a suitable candidate for O/W emulsion preparation. Lycopene encapsulation efficiency (EE) of 70-75% and loading capacities of 0.14 mg/g were registered in stable emulsions stabilized either by non-ionic surfactants or acidified chitosans. Therefore, chitosan is a good alternative as a sustainable stabilizer to partially replace traditional synthetic ingredients with a new biodegradable, renewable and biocompatible material which could contribute to reduce the environmental impact as well as the ingestion of synthetic toxic materials by humans, decreasing their risk of suffering from chronic and complex pathologies, among which several types of cancer stand out.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.