Khayra Mersellem, Djamila Bouazza, Irene Malpartida, Pedro Maireles-Torres, Anne Boos, Hary Demey, Hafida Miloudi
{"title":"膦酸配体功能化介孔材料的合成与表征及其去除镉(II)的能力","authors":"Khayra Mersellem, Djamila Bouazza, Irene Malpartida, Pedro Maireles-Torres, Anne Boos, Hary Demey, Hafida Miloudi","doi":"10.3390/molecules29215199","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a study of cadmium removal from nitrate medium using adsorption in calcined mesoporous silica (MCM-C), mesoporous silica doped (MCM_DIOPA), and calcined and impregnated mesoporous silica (MCM@DIOPA), with diisooctylphosphinic acid (DIOPA). The sorbents were synthesized via a sol-gel method. Several characterization techniques, such as XRD, FTIR spectroscopy, N<sub>2</sub> sorption and elemental analysis, have been used to determine the main structural, textural, and chemical properties of prepared sorbents. Batch adsorption and kinetics tests were carried out, where the influence of pH and contact time of the sorbents and their role in cation removal were studied. Experimental results show poor sorption efficiencies with MCM-C and MCM_DIOPA at pH 5.85. At the same pH, better cadmium extraction was attained by MCM@DIOPA and was achieved within 30 min. The pseudo-second-order model is the most appropriate model to describe the elimination mechanism of Cd(II) ions. The Langmuir equation was used to model the sorption isotherm and the maximum sorption capacity of Cd(II) is 22.16 mg/g (200 mmol/kg). The complex type of the probable extracted species isCdL2-HL.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547477/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Mesoporous Materials Functionalized with Phosphinic Acid Ligand and Their Capability to Remove Cd(II).\",\"authors\":\"Khayra Mersellem, Djamila Bouazza, Irene Malpartida, Pedro Maireles-Torres, Anne Boos, Hary Demey, Hafida Miloudi\",\"doi\":\"10.3390/molecules29215199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a study of cadmium removal from nitrate medium using adsorption in calcined mesoporous silica (MCM-C), mesoporous silica doped (MCM_DIOPA), and calcined and impregnated mesoporous silica (MCM@DIOPA), with diisooctylphosphinic acid (DIOPA). The sorbents were synthesized via a sol-gel method. Several characterization techniques, such as XRD, FTIR spectroscopy, N<sub>2</sub> sorption and elemental analysis, have been used to determine the main structural, textural, and chemical properties of prepared sorbents. Batch adsorption and kinetics tests were carried out, where the influence of pH and contact time of the sorbents and their role in cation removal were studied. Experimental results show poor sorption efficiencies with MCM-C and MCM_DIOPA at pH 5.85. At the same pH, better cadmium extraction was attained by MCM@DIOPA and was achieved within 30 min. The pseudo-second-order model is the most appropriate model to describe the elimination mechanism of Cd(II) ions. The Langmuir equation was used to model the sorption isotherm and the maximum sorption capacity of Cd(II) is 22.16 mg/g (200 mmol/kg). The complex type of the probable extracted species isCdL2-HL.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"29 21\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules29215199\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29215199","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis and Characterization of Mesoporous Materials Functionalized with Phosphinic Acid Ligand and Their Capability to Remove Cd(II).
This article presents a study of cadmium removal from nitrate medium using adsorption in calcined mesoporous silica (MCM-C), mesoporous silica doped (MCM_DIOPA), and calcined and impregnated mesoporous silica (MCM@DIOPA), with diisooctylphosphinic acid (DIOPA). The sorbents were synthesized via a sol-gel method. Several characterization techniques, such as XRD, FTIR spectroscopy, N2 sorption and elemental analysis, have been used to determine the main structural, textural, and chemical properties of prepared sorbents. Batch adsorption and kinetics tests were carried out, where the influence of pH and contact time of the sorbents and their role in cation removal were studied. Experimental results show poor sorption efficiencies with MCM-C and MCM_DIOPA at pH 5.85. At the same pH, better cadmium extraction was attained by MCM@DIOPA and was achieved within 30 min. The pseudo-second-order model is the most appropriate model to describe the elimination mechanism of Cd(II) ions. The Langmuir equation was used to model the sorption isotherm and the maximum sorption capacity of Cd(II) is 22.16 mg/g (200 mmol/kg). The complex type of the probable extracted species isCdL2-HL.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.