了解用于长效钠离子电池的含钾多负离子材料中的支柱化学。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-14 DOI:10.1038/s41467-024-54317-8
Wenyi Liu, Wenjun Cui, Chengjun Yi, Jiale Xia, Jinbing Shang, Weifei Hu, Zhuo Wang, Xiahan Sang, Yuanyuan Li, Jinping Liu
{"title":"了解用于长效钠离子电池的含钾多负离子材料中的支柱化学。","authors":"Wenyi Liu, Wenjun Cui, Chengjun Yi, Jiale Xia, Jinbing Shang, Weifei Hu, Zhuo Wang, Xiahan Sang, Yuanyuan Li, Jinping Liu","doi":"10.1038/s41467-024-54317-8","DOIUrl":null,"url":null,"abstract":"<p><p>K-containing polyanion compounds hold great potential as anodes for sodium-ion batteries considering their large ion transport channels and stable open frameworks; however, sodium storage behavior has rarely been studied, and the mechanism remains unclear. Here, using a noninterference KTiOPO<sub>4</sub> thin-film model, the Na<sup>+</sup> storage mechanism is comprehensively revealed by in situ/operando spectroscopy, aberration-corrected electron microscopy and density functional theory calculations. We find that incomplete K<sup>+</sup>/Na<sup>+</sup> ion exchange occurs and eventually 0.15 K<sup>+</sup> remains as a pillar to stabilize the tunnel structure. The pillar effect substantially maintains the volume change within 3.9%, much smaller than that of K<sup>+</sup>(Na<sup>+</sup>) insertion into KTiOPO<sub>4</sub>(NaTiOPO<sub>4</sub>) (9.5%; 5%), thus enabling 10,000 cycles. The powder electrode demonstrates comparable capacity and can work efficiently at commercial-level areal capacity of 2.47 mAh cm<sup>-2</sup>. The quasi-solid-state pouch cell with high safety under extreme abuse also manifests long-term cycling stability. This pillar chemistry will inspire alkali metal ion storage in hosts containing heterogeneous cations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"9889"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564968/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding pillar chemistry in potassium-containing polyanion materials for long-lasting sodium-ion batteries.\",\"authors\":\"Wenyi Liu, Wenjun Cui, Chengjun Yi, Jiale Xia, Jinbing Shang, Weifei Hu, Zhuo Wang, Xiahan Sang, Yuanyuan Li, Jinping Liu\",\"doi\":\"10.1038/s41467-024-54317-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>K-containing polyanion compounds hold great potential as anodes for sodium-ion batteries considering their large ion transport channels and stable open frameworks; however, sodium storage behavior has rarely been studied, and the mechanism remains unclear. Here, using a noninterference KTiOPO<sub>4</sub> thin-film model, the Na<sup>+</sup> storage mechanism is comprehensively revealed by in situ/operando spectroscopy, aberration-corrected electron microscopy and density functional theory calculations. We find that incomplete K<sup>+</sup>/Na<sup>+</sup> ion exchange occurs and eventually 0.15 K<sup>+</sup> remains as a pillar to stabilize the tunnel structure. The pillar effect substantially maintains the volume change within 3.9%, much smaller than that of K<sup>+</sup>(Na<sup>+</sup>) insertion into KTiOPO<sub>4</sub>(NaTiOPO<sub>4</sub>) (9.5%; 5%), thus enabling 10,000 cycles. The powder electrode demonstrates comparable capacity and can work efficiently at commercial-level areal capacity of 2.47 mAh cm<sup>-2</sup>. The quasi-solid-state pouch cell with high safety under extreme abuse also manifests long-term cycling stability. This pillar chemistry will inspire alkali metal ion storage in hosts containing heterogeneous cations.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"9889\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54317-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54317-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

含 K 的多阴离子化合物具有较大的离子传输通道和稳定的开放框架,因此具有作为钠离子电池阳极的巨大潜力。在此,我们利用无干涉 KTiOPO4 薄膜模型,通过原位/过道光谱、像差校正电子显微镜和密度泛函理论计算,全面揭示了 Na+ 的储存机制。我们发现,K+/Na+ 离子交换不完全,最终 0.15 K+ 仍作为支柱稳定了隧道结构。支柱效应将体积变化大幅控制在 3.9% 以内,远小于 K+(Na+)插入 KTiOPO4(NaTiOPO4)的体积变化(9.5%;5%),因此可实现 10,000 次循环。该粉末电极显示出相当的容量,并能在 2.47 mAh cm-2 的商业级areal容量下有效工作。这种准固态袋式电池在极端滥用情况下具有很高的安全性,同时还表现出长期循环稳定性。这种支柱化学将启发人们在含有异质阳离子的宿主中存储碱金属离子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding pillar chemistry in potassium-containing polyanion materials for long-lasting sodium-ion batteries.

K-containing polyanion compounds hold great potential as anodes for sodium-ion batteries considering their large ion transport channels and stable open frameworks; however, sodium storage behavior has rarely been studied, and the mechanism remains unclear. Here, using a noninterference KTiOPO4 thin-film model, the Na+ storage mechanism is comprehensively revealed by in situ/operando spectroscopy, aberration-corrected electron microscopy and density functional theory calculations. We find that incomplete K+/Na+ ion exchange occurs and eventually 0.15 K+ remains as a pillar to stabilize the tunnel structure. The pillar effect substantially maintains the volume change within 3.9%, much smaller than that of K+(Na+) insertion into KTiOPO4(NaTiOPO4) (9.5%; 5%), thus enabling 10,000 cycles. The powder electrode demonstrates comparable capacity and can work efficiently at commercial-level areal capacity of 2.47 mAh cm-2. The quasi-solid-state pouch cell with high safety under extreme abuse also manifests long-term cycling stability. This pillar chemistry will inspire alkali metal ion storage in hosts containing heterogeneous cations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet Interstellar formation of lactaldehyde, a key intermediate in the methylglyoxal pathway Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure Structural insight into the distinct regulatory mechanism of the HEPN–MNT toxin-antitoxin system in Legionella pneumophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1