TranscriptDB:以转录本为中心的数据库,用于研究真核生物转录本的保存和进化。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-11-12 DOI:10.1093/nar/gkae995
Wend Yam D D Ouedraogo, Aida Ouangraoua
{"title":"TranscriptDB:以转录本为中心的数据库,用于研究真核生物转录本的保存和进化。","authors":"Wend Yam D D Ouedraogo, Aida Ouangraoua","doi":"10.1093/nar/gkae995","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genes can encode multiple distinct transcripts through the alternative splicing (AS) of genes. Interest in the AS mechanism and its evolution across different species has stimulated numerous studies, leading to several databases that provide information on AS and transcriptome data across multiple eukaryotic species. However, existing resources do not offer information on transcript conservation and evolution between genes of multiple species. Similarly to genes, identifying conserved transcripts-those from homologous genes that have retained a similar exon composition-is useful for determining transcript homology relationships, studying transcript functions and reconstructing transcript phylogenies. To address this gap, we have developed TranscriptDB, a database dedicated to studying the conservation and evolution of transcripts within gene families. TranscriptDB offers an extensive catalog of conserved transcripts and phylogenies for 317 annotated eukaryotic species, sourced from Ensembl database version 111. It serves multiple purposes, including the exploration of gene and transcript evolution. Users can access TranscriptDB through various browsing and querying tools, including a user-friendly web interface. The incorporated web servers enable users to retrieve information on transcript evolution using their own data as input. Additionally, a REST application programming interface is available for programmatic data retrieval. A data directory is also available for bulk downloads. TranscriptDB and its resources are freely accessible at https://transcriptdb.cobius.usherbrooke.ca.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TranscriptDB: a transcript-centric database to study eukaryotic transcript conservation and evolution.\",\"authors\":\"Wend Yam D D Ouedraogo, Aida Ouangraoua\",\"doi\":\"10.1093/nar/gkae995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic genes can encode multiple distinct transcripts through the alternative splicing (AS) of genes. Interest in the AS mechanism and its evolution across different species has stimulated numerous studies, leading to several databases that provide information on AS and transcriptome data across multiple eukaryotic species. However, existing resources do not offer information on transcript conservation and evolution between genes of multiple species. Similarly to genes, identifying conserved transcripts-those from homologous genes that have retained a similar exon composition-is useful for determining transcript homology relationships, studying transcript functions and reconstructing transcript phylogenies. To address this gap, we have developed TranscriptDB, a database dedicated to studying the conservation and evolution of transcripts within gene families. TranscriptDB offers an extensive catalog of conserved transcripts and phylogenies for 317 annotated eukaryotic species, sourced from Ensembl database version 111. It serves multiple purposes, including the exploration of gene and transcript evolution. Users can access TranscriptDB through various browsing and querying tools, including a user-friendly web interface. The incorporated web servers enable users to retrieve information on transcript evolution using their own data as input. Additionally, a REST application programming interface is available for programmatic data retrieval. A data directory is also available for bulk downloads. TranscriptDB and its resources are freely accessible at https://transcriptdb.cobius.usherbrooke.ca.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae995\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae995","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真核生物基因可以通过基因的替代剪接(AS)编码多种不同的转录本。人们对替代剪接机制及其在不同物种间的进化产生了浓厚的兴趣,由此产生了多个数据库,提供真核生物多个物种的替代剪接信息和转录组数据。然而,现有资源并不能提供多个物种基因间转录本的保护和进化信息。与基因类似,识别保守的转录本--那些来自同源基因且保留了相似外显子组成的转录本--对于确定转录本同源性关系、研究转录本功能和重建转录本系统发育非常有用。为了填补这一空白,我们开发了转录本数据库(TranscriptDB),这是一个专门研究基因家族内转录本保护和进化的数据库。TranscriptDB 为 317 个已注释的真核生物物种提供了广泛的保守转录本和系统发育目录,其来源是 Ensembl 数据库第 111 版。它有多种用途,包括探索基因和转录本的进化。用户可以通过各种浏览和查询工具访问 TranscriptDB,包括一个用户友好的网络界面。内置的网络服务器可让用户使用自己的数据作为输入检索转录本进化信息。此外,REST 应用程序编程接口可用于程序化数据检索。数据目录也可用于批量下载。TranscriptDB 及其资源可通过 https://transcriptdb.cobius.usherbrooke.ca 免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TranscriptDB: a transcript-centric database to study eukaryotic transcript conservation and evolution.

Eukaryotic genes can encode multiple distinct transcripts through the alternative splicing (AS) of genes. Interest in the AS mechanism and its evolution across different species has stimulated numerous studies, leading to several databases that provide information on AS and transcriptome data across multiple eukaryotic species. However, existing resources do not offer information on transcript conservation and evolution between genes of multiple species. Similarly to genes, identifying conserved transcripts-those from homologous genes that have retained a similar exon composition-is useful for determining transcript homology relationships, studying transcript functions and reconstructing transcript phylogenies. To address this gap, we have developed TranscriptDB, a database dedicated to studying the conservation and evolution of transcripts within gene families. TranscriptDB offers an extensive catalog of conserved transcripts and phylogenies for 317 annotated eukaryotic species, sourced from Ensembl database version 111. It serves multiple purposes, including the exploration of gene and transcript evolution. Users can access TranscriptDB through various browsing and querying tools, including a user-friendly web interface. The incorporated web servers enable users to retrieve information on transcript evolution using their own data as input. Additionally, a REST application programming interface is available for programmatic data retrieval. A data directory is also available for bulk downloads. TranscriptDB and its resources are freely accessible at https://transcriptdb.cobius.usherbrooke.ca.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Deep learning insights into distinct patterns of polygenic adaptation across human populations. Single-stranded DNA with internal base modifications mediates highly efficient knock-in in primary cells using CRISPR-Cas9 Dimerization of the deaminase domain and locking interactions with Cas9 boost base editing efficiency in ABE8e. CATH v4.4: major expansion of CATH by experimental and predicted structural data L1-ORF1p nucleoprotein can rapidly assume distinct conformations and simultaneously bind more than one nucleic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1