Jordi Rovira, María José Ramirez-Bajo, Elisenda Bañon-Maneus, Pedro Ventura-Aguiar, Marta Arias-Guillén, Barbara Romano-Andrioni, Raquel Ojeda, Ignacio Revuelta, Héctor García-Calderó, Joan Albert Barberà, Ana Paula Dantas, Maribel Diaz-Ricart, Fàtima Crispi, Juan Carlos García-Pagán, Josep M Campistol, Fritz Diekmann
{"title":"地中海饮食模式:地中海饮食模式:对晚期慢性肾脏病患者心血管风险相关的不同改变途径的潜在影响。","authors":"Jordi Rovira, María José Ramirez-Bajo, Elisenda Bañon-Maneus, Pedro Ventura-Aguiar, Marta Arias-Guillén, Barbara Romano-Andrioni, Raquel Ojeda, Ignacio Revuelta, Héctor García-Calderó, Joan Albert Barberà, Ana Paula Dantas, Maribel Diaz-Ricart, Fàtima Crispi, Juan Carlos García-Pagán, Josep M Campistol, Fritz Diekmann","doi":"10.3390/nu16213739","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular disease (CVD) remains the most common cause of mortality in chronic kidney disease (CKD) patients. Several studies suggest that the Mediterranean diet reduces the risk of CVD due to its influence on endothelial function, inflammation, lipid profile, and blood pressure. Integrating metabolomic and proteomic analyses of CKD could provide insights into the pathways involved in uremia-induced CVD and those pathways modifiable by the Mediterranean diet.</p><p><strong>Methods: </strong>We performed metabolomic and proteomic analyses on serum samples from 19 patients with advanced CKD (aCKD) and 27 healthy volunteers. The metabolites were quantified using four different approaches, based on their properties. Proteomic analysis was performed after depletion of seven abundant serum proteins (Albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, and fibrinogen). Integrative analysis was performed using MetaboAnalyst 4.0 and STRING 11.0 software to identify the dysregulated pathways and biomarkers.</p><p><strong>Results: </strong>A total of 135 metabolites and 75 proteins were differentially expressed in aCKD patients, compared to the controls. Pathway enrichment analysis showed significant alterations in the innate immune system pathways, including complement, coagulation, and neutrophil degranulation, along with disrupted linoleic acid and cholesterol metabolism. Additionally, certain key metabolites and proteins were altered in aCKD patients, such as glutathione peroxidase 3, carnitine, homocitrulline, 3-methylhistidine, and several amino acids and derivatives.</p><p><strong>Conclusions: </strong>Our findings reveal significant dysregulation of the serum metabolome and proteome in aCKD, particularly in those pathways associated with endothelial dysfunction and CVD. These results suggest that CVD prevention in CKD may benefit from a multifaceted approach, including dietary interventions such as the Mediterranean diet.</p>","PeriodicalId":19486,"journal":{"name":"Nutrients","volume":"16 21","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mediterranean Diet Pattern: Potential Impact on the Different Altered Pathways Related to Cardiovascular Risk in Advanced Chronic Kidney Disease.\",\"authors\":\"Jordi Rovira, María José Ramirez-Bajo, Elisenda Bañon-Maneus, Pedro Ventura-Aguiar, Marta Arias-Guillén, Barbara Romano-Andrioni, Raquel Ojeda, Ignacio Revuelta, Héctor García-Calderó, Joan Albert Barberà, Ana Paula Dantas, Maribel Diaz-Ricart, Fàtima Crispi, Juan Carlos García-Pagán, Josep M Campistol, Fritz Diekmann\",\"doi\":\"10.3390/nu16213739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiovascular disease (CVD) remains the most common cause of mortality in chronic kidney disease (CKD) patients. Several studies suggest that the Mediterranean diet reduces the risk of CVD due to its influence on endothelial function, inflammation, lipid profile, and blood pressure. Integrating metabolomic and proteomic analyses of CKD could provide insights into the pathways involved in uremia-induced CVD and those pathways modifiable by the Mediterranean diet.</p><p><strong>Methods: </strong>We performed metabolomic and proteomic analyses on serum samples from 19 patients with advanced CKD (aCKD) and 27 healthy volunteers. The metabolites were quantified using four different approaches, based on their properties. Proteomic analysis was performed after depletion of seven abundant serum proteins (Albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, and fibrinogen). Integrative analysis was performed using MetaboAnalyst 4.0 and STRING 11.0 software to identify the dysregulated pathways and biomarkers.</p><p><strong>Results: </strong>A total of 135 metabolites and 75 proteins were differentially expressed in aCKD patients, compared to the controls. Pathway enrichment analysis showed significant alterations in the innate immune system pathways, including complement, coagulation, and neutrophil degranulation, along with disrupted linoleic acid and cholesterol metabolism. Additionally, certain key metabolites and proteins were altered in aCKD patients, such as glutathione peroxidase 3, carnitine, homocitrulline, 3-methylhistidine, and several amino acids and derivatives.</p><p><strong>Conclusions: </strong>Our findings reveal significant dysregulation of the serum metabolome and proteome in aCKD, particularly in those pathways associated with endothelial dysfunction and CVD. These results suggest that CVD prevention in CKD may benefit from a multifaceted approach, including dietary interventions such as the Mediterranean diet.</p>\",\"PeriodicalId\":19486,\"journal\":{\"name\":\"Nutrients\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrients\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/nu16213739\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrients","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/nu16213739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Mediterranean Diet Pattern: Potential Impact on the Different Altered Pathways Related to Cardiovascular Risk in Advanced Chronic Kidney Disease.
Background: Cardiovascular disease (CVD) remains the most common cause of mortality in chronic kidney disease (CKD) patients. Several studies suggest that the Mediterranean diet reduces the risk of CVD due to its influence on endothelial function, inflammation, lipid profile, and blood pressure. Integrating metabolomic and proteomic analyses of CKD could provide insights into the pathways involved in uremia-induced CVD and those pathways modifiable by the Mediterranean diet.
Methods: We performed metabolomic and proteomic analyses on serum samples from 19 patients with advanced CKD (aCKD) and 27 healthy volunteers. The metabolites were quantified using four different approaches, based on their properties. Proteomic analysis was performed after depletion of seven abundant serum proteins (Albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, and fibrinogen). Integrative analysis was performed using MetaboAnalyst 4.0 and STRING 11.0 software to identify the dysregulated pathways and biomarkers.
Results: A total of 135 metabolites and 75 proteins were differentially expressed in aCKD patients, compared to the controls. Pathway enrichment analysis showed significant alterations in the innate immune system pathways, including complement, coagulation, and neutrophil degranulation, along with disrupted linoleic acid and cholesterol metabolism. Additionally, certain key metabolites and proteins were altered in aCKD patients, such as glutathione peroxidase 3, carnitine, homocitrulline, 3-methylhistidine, and several amino acids and derivatives.
Conclusions: Our findings reveal significant dysregulation of the serum metabolome and proteome in aCKD, particularly in those pathways associated with endothelial dysfunction and CVD. These results suggest that CVD prevention in CKD may benefit from a multifaceted approach, including dietary interventions such as the Mediterranean diet.
期刊介绍:
Nutrients (ISSN 2072-6643) is an international, peer-reviewed open access advanced forum for studies related to Human Nutrition. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.