Tapan A. Patel , Lie Gao , Shane H. Boomer , Xuefei Liu , Kaushik P. Patel , Hong Zheng
{"title":"Ins2Akita-1型糖尿病小鼠室旁核内神经元一氧化氮合酶(nNOS)的下调有助于交感神经兴奋。","authors":"Tapan A. Patel , Lie Gao , Shane H. Boomer , Xuefei Liu , Kaushik P. Patel , Hong Zheng","doi":"10.1016/j.niox.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Activation of both renin-angiotensin system (RAS) and the sympathetic system is the primary etiologic event in developing cardiovascular complications in diabetes mellitus (DM). However, the precise mechanisms for sympathetic activation in DM have not been elucidated. Here we attempted to investigate diabetes-linked cardiovascular dysregulation due to angiotensin II (Ang II)-mediated reduction in neuronal nitric oxide (NO) synthase (nNOS) within the paraventricular neuleus (PVN). In the present study, we used Ins2<sup>+/−</sup>Akita (a spontaneous, insulin-dependent genetic diabetic non-obese murine model) and wild-type (WT) littermates mice as controls. At 14 weeks of age, we found the Akita mice had increased renal sympathetic nerve activity and elevated levels of plasma norepinephrine. There was decreased expression of nNOS protein (Akita 0.43 ± 0.11 vs. WT 0.75 ± 0.05, P < 0.05) in the PVN of Akita mice. Akita mice had increased expression of angiotensin-converting enzyme (ACE) (Akita 0.58 ± 0.05 vs. WT 0.34 ± 0.04, P < 0.05) and Ang II type 1 receptor (Akita 0.49 ± 0.03 vs. WT 0.29 ± 0.09, P < 0.05), decreased expressions of ACE2 (Akita 0.17 ± 0.05 vs. WT 0.27 ± 0.03, P < 0.05) and angiotensin (1–7) Mas receptor (Akita 0.46 ± 0.02 vs. WT 0.77 ± 0.07, P < 0.05). Futher, there were increased protein levels of protein inhibitor of nNOS (PIN) (Akita 1.75 ± 0.08 vs. WT 0.71 ± 0.09, P < 0.05) with concomitantly decreased catalytically active dimers of nNOS (Akita 0.11 ± 0.04 vs. WT 0.19 ± 0.02, P < 0.05) in the PVN in Akita mice. Our studies suggest that activation of the excitatory arm of RAS, leads to a decrease NO, causing an over-activation of the sympathetic drive in DM.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"154 ","pages":"Pages 1-7"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulation of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus in Ins2Akita-type-1 diabetic mice contributes to sympatho-excitation\",\"authors\":\"Tapan A. Patel , Lie Gao , Shane H. Boomer , Xuefei Liu , Kaushik P. Patel , Hong Zheng\",\"doi\":\"10.1016/j.niox.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Activation of both renin-angiotensin system (RAS) and the sympathetic system is the primary etiologic event in developing cardiovascular complications in diabetes mellitus (DM). However, the precise mechanisms for sympathetic activation in DM have not been elucidated. Here we attempted to investigate diabetes-linked cardiovascular dysregulation due to angiotensin II (Ang II)-mediated reduction in neuronal nitric oxide (NO) synthase (nNOS) within the paraventricular neuleus (PVN). In the present study, we used Ins2<sup>+/−</sup>Akita (a spontaneous, insulin-dependent genetic diabetic non-obese murine model) and wild-type (WT) littermates mice as controls. At 14 weeks of age, we found the Akita mice had increased renal sympathetic nerve activity and elevated levels of plasma norepinephrine. There was decreased expression of nNOS protein (Akita 0.43 ± 0.11 vs. WT 0.75 ± 0.05, P < 0.05) in the PVN of Akita mice. Akita mice had increased expression of angiotensin-converting enzyme (ACE) (Akita 0.58 ± 0.05 vs. WT 0.34 ± 0.04, P < 0.05) and Ang II type 1 receptor (Akita 0.49 ± 0.03 vs. WT 0.29 ± 0.09, P < 0.05), decreased expressions of ACE2 (Akita 0.17 ± 0.05 vs. WT 0.27 ± 0.03, P < 0.05) and angiotensin (1–7) Mas receptor (Akita 0.46 ± 0.02 vs. WT 0.77 ± 0.07, P < 0.05). Futher, there were increased protein levels of protein inhibitor of nNOS (PIN) (Akita 1.75 ± 0.08 vs. WT 0.71 ± 0.09, P < 0.05) with concomitantly decreased catalytically active dimers of nNOS (Akita 0.11 ± 0.04 vs. WT 0.19 ± 0.02, P < 0.05) in the PVN in Akita mice. Our studies suggest that activation of the excitatory arm of RAS, leads to a decrease NO, causing an over-activation of the sympathetic drive in DM.</div></div>\",\"PeriodicalId\":19357,\"journal\":{\"name\":\"Nitric oxide : biology and chemistry\",\"volume\":\"154 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitric oxide : biology and chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089860324001381\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089860324001381","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
肾素-血管紧张素系统(RAS)和交感神经系统的激活是糖尿病(DM)心血管并发症的主要病因。然而,DM 中交感神经激活的确切机制尚未阐明。在此,我们试图研究血管紧张素 II(Ang II)介导的室旁神经节(PVN)内神经元一氧化氮(NO)合成酶(nNOS)减少导致的糖尿病相关心血管失调。在本研究中,我们使用 Ins2+/-Akita(一种自发性、胰岛素依赖型遗传糖尿病非肥胖小鼠模型)和野生型(WT)小鼠作为对照。我们发现秋田小鼠在 14 周龄时,肾交感神经活性增加,血浆去甲肾上腺素水平升高。秋田小鼠PVN中的nNOS蛋白表达量减少(秋田小鼠为0.43 ± 0.11,WT小鼠为0.75 ± 0.05,P < 0.05)。秋田小鼠血管紧张素转换酶(ACE)(秋田 0.58 ± 0.05 vs. WT 0.34 ± 0.04,P < 0.05)和 Ang II 1 型受体(秋田 0.49 ± 0.03 vs. WT 0.29 ± 0.09,P < 0.05),ACE2(秋田 0.17 ± 0.05 vs. WT 0.27 ± 0.03,P < 0.05)和血管紧张素(1-7)Mas 受体(秋田 0.46 ± 0.02 vs. WT 0.77 ± 0.07,P < 0.05)的表达减少。此外,秋田小鼠 PVN 中 nNOS 蛋白抑制剂(PIN)的蛋白水平升高(秋田 1.75 ± 0.08 vs. WT 0.71 ± 0.09,P < 0.05),同时 nNOS 催化活性二聚体的水平降低(秋田 0.11 ± 0.04 vs. WT 0.19 ± 0.02,P < 0.05)。我们的研究表明,RAS 兴奋臂的激活导致 NO 减少,从而引起 DM 中交感神经驱动的过度激活。
Downregulation of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus in Ins2Akita-type-1 diabetic mice contributes to sympatho-excitation
Activation of both renin-angiotensin system (RAS) and the sympathetic system is the primary etiologic event in developing cardiovascular complications in diabetes mellitus (DM). However, the precise mechanisms for sympathetic activation in DM have not been elucidated. Here we attempted to investigate diabetes-linked cardiovascular dysregulation due to angiotensin II (Ang II)-mediated reduction in neuronal nitric oxide (NO) synthase (nNOS) within the paraventricular neuleus (PVN). In the present study, we used Ins2+/−Akita (a spontaneous, insulin-dependent genetic diabetic non-obese murine model) and wild-type (WT) littermates mice as controls. At 14 weeks of age, we found the Akita mice had increased renal sympathetic nerve activity and elevated levels of plasma norepinephrine. There was decreased expression of nNOS protein (Akita 0.43 ± 0.11 vs. WT 0.75 ± 0.05, P < 0.05) in the PVN of Akita mice. Akita mice had increased expression of angiotensin-converting enzyme (ACE) (Akita 0.58 ± 0.05 vs. WT 0.34 ± 0.04, P < 0.05) and Ang II type 1 receptor (Akita 0.49 ± 0.03 vs. WT 0.29 ± 0.09, P < 0.05), decreased expressions of ACE2 (Akita 0.17 ± 0.05 vs. WT 0.27 ± 0.03, P < 0.05) and angiotensin (1–7) Mas receptor (Akita 0.46 ± 0.02 vs. WT 0.77 ± 0.07, P < 0.05). Futher, there were increased protein levels of protein inhibitor of nNOS (PIN) (Akita 1.75 ± 0.08 vs. WT 0.71 ± 0.09, P < 0.05) with concomitantly decreased catalytically active dimers of nNOS (Akita 0.11 ± 0.04 vs. WT 0.19 ± 0.02, P < 0.05) in the PVN in Akita mice. Our studies suggest that activation of the excitatory arm of RAS, leads to a decrease NO, causing an over-activation of the sympathetic drive in DM.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.