XiaoLong Zhu, Shaofeng Zhang, Yong Gao, Dalong Guo, Jiawei Xu, Ruitian Zhang, Dongmei Zhao, Kaizhao Lin, Xubin Zhu, Dadi Xing, Shucheng Cui, Stylianos Passalidis, Alain Dubois, X Ma
{"title":"离子-原子电荷交换碰撞中自旋统计破缺的直接证据","authors":"XiaoLong Zhu, Shaofeng Zhang, Yong Gao, Dalong Guo, Jiawei Xu, Ruitian Zhang, Dongmei Zhao, Kaizhao Lin, Xubin Zhu, Dadi Xing, Shucheng Cui, Stylianos Passalidis, Alain Dubois, X Ma","doi":"10.1103/PhysRevLett.133.173002","DOIUrl":null,"url":null,"abstract":"<p><p>Recent experimental studies have questioned the validity of spin statistics assumptions, particularly in charge exchange processes occurring in atomic MeV collisions. Here, we study spin-resolved single electron capture processes in collisions between C^{3+} ions and helium within an energy range of 1.25-400 keV/u. Using high resolution reaction microscope and multielectronic theoretical approaches, we directly measure and calculate the true population information of the C^{2+}(1s^{2}2s2p ^{1,3}P) states at the time of electron capture, overcoming the previous experimental and theoretical difficulties. At the level of integral and scattering angle differential cross sections, our results demonstrate the breakdown of pure spin statistics arguments, especially at high impact energies where they are traditionally expected to be valid. These novel findings and conclusions raise intriguing questions both in the understanding of the electronic dynamics during such fast collisional processes and in exploring quantum manipulation of atomic and molecular reactivity.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 17","pages":"173002"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Evidence of Breakdown of Spin Statistics in Ion-Atom Charge Exchange Collisions.\",\"authors\":\"XiaoLong Zhu, Shaofeng Zhang, Yong Gao, Dalong Guo, Jiawei Xu, Ruitian Zhang, Dongmei Zhao, Kaizhao Lin, Xubin Zhu, Dadi Xing, Shucheng Cui, Stylianos Passalidis, Alain Dubois, X Ma\",\"doi\":\"10.1103/PhysRevLett.133.173002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent experimental studies have questioned the validity of spin statistics assumptions, particularly in charge exchange processes occurring in atomic MeV collisions. Here, we study spin-resolved single electron capture processes in collisions between C^{3+} ions and helium within an energy range of 1.25-400 keV/u. Using high resolution reaction microscope and multielectronic theoretical approaches, we directly measure and calculate the true population information of the C^{2+}(1s^{2}2s2p ^{1,3}P) states at the time of electron capture, overcoming the previous experimental and theoretical difficulties. At the level of integral and scattering angle differential cross sections, our results demonstrate the breakdown of pure spin statistics arguments, especially at high impact energies where they are traditionally expected to be valid. These novel findings and conclusions raise intriguing questions both in the understanding of the electronic dynamics during such fast collisional processes and in exploring quantum manipulation of atomic and molecular reactivity.</p>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"133 17\",\"pages\":\"173002\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevLett.133.173002\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.173002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct Evidence of Breakdown of Spin Statistics in Ion-Atom Charge Exchange Collisions.
Recent experimental studies have questioned the validity of spin statistics assumptions, particularly in charge exchange processes occurring in atomic MeV collisions. Here, we study spin-resolved single electron capture processes in collisions between C^{3+} ions and helium within an energy range of 1.25-400 keV/u. Using high resolution reaction microscope and multielectronic theoretical approaches, we directly measure and calculate the true population information of the C^{2+}(1s^{2}2s2p ^{1,3}P) states at the time of electron capture, overcoming the previous experimental and theoretical difficulties. At the level of integral and scattering angle differential cross sections, our results demonstrate the breakdown of pure spin statistics arguments, especially at high impact energies where they are traditionally expected to be valid. These novel findings and conclusions raise intriguing questions both in the understanding of the electronic dynamics during such fast collisional processes and in exploring quantum manipulation of atomic and molecular reactivity.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks