用于损伤定位的堆叠神经网络模型

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217019
Catalin V Rusu, Gilbert-Rainer Gillich, Cristian Tufisi, Nicoleta Gillich, Thu Hang Bui, Cosmina Ionut
{"title":"用于损伤定位的堆叠神经网络模型","authors":"Catalin V Rusu, Gilbert-Rainer Gillich, Cristian Tufisi, Nicoleta Gillich, Thu Hang Bui, Cosmina Ionut","doi":"10.3390/s24217019","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional vibration-based damage detection methods often involve human intervention in decision-making, therefore being time-consuming and error-prone. In this study, we propose using Artificial Neural Networks (ANNs) to detect patterns in the structural response and create accurate predictions. The features extracted from the response signal are the Relative Frequency Shifts (RFSs) of the first eight weak-axis bending vibration modes, and the predictions refer to the damage location. To increase the accuracy of the predictions, we propose a novel stacked neural network approach, capable of detecting damage locations with high accuracy. The dataset used for training involves, as input data, the RFSs calculated with an original method for numerous damage locations and severities. The following models were used as building blocks for our stacked approach: Multilayer Perceptron, Recurrent Neural Network, Long Short-term Memory, and Gated Recurrent Units. The entire beam was thus split into segments and each network was trained in this stacked model on one beam segment. All results obtained with the models are also compared to a standard neural network trained on the entire beam. The results obtained show that the model that performs the best contains 14 stacked two-layer feedforward networks.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548493/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Stacked Neural Network Model for Damage Localization.\",\"authors\":\"Catalin V Rusu, Gilbert-Rainer Gillich, Cristian Tufisi, Nicoleta Gillich, Thu Hang Bui, Cosmina Ionut\",\"doi\":\"10.3390/s24217019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional vibration-based damage detection methods often involve human intervention in decision-making, therefore being time-consuming and error-prone. In this study, we propose using Artificial Neural Networks (ANNs) to detect patterns in the structural response and create accurate predictions. The features extracted from the response signal are the Relative Frequency Shifts (RFSs) of the first eight weak-axis bending vibration modes, and the predictions refer to the damage location. To increase the accuracy of the predictions, we propose a novel stacked neural network approach, capable of detecting damage locations with high accuracy. The dataset used for training involves, as input data, the RFSs calculated with an original method for numerous damage locations and severities. The following models were used as building blocks for our stacked approach: Multilayer Perceptron, Recurrent Neural Network, Long Short-term Memory, and Gated Recurrent Units. The entire beam was thus split into segments and each network was trained in this stacked model on one beam segment. All results obtained with the models are also compared to a standard neural network trained on the entire beam. The results obtained show that the model that performs the best contains 14 stacked two-layer feedforward networks.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217019\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217019","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的基于振动的损伤检测方法通常需要人工干预决策,因此既耗时又容易出错。在本研究中,我们建议使用人工神经网络(ANN)来检测结构响应中的模式并进行准确预测。从响应信号中提取的特征是前八个弱轴弯曲振动模式的相对频率偏移 (RFS),而预测则是指损伤位置。为了提高预测的准确性,我们提出了一种新颖的叠加神经网络方法,能够高精度地检测损坏位置。作为输入数据,用于训练的数据集包括用一种原始方法计算出的多个损坏位置和损坏严重程度的 RFS。以下模型被用作我们叠加方法的构建模块:多层感知器、递归神经网络、长短期记忆和门控递归单元。因此,整个光束被分割成若干段,每个网络都在一个光束段上用这种堆叠模型进行训练。这些模型获得的所有结果还与在整个光束上训练的标准神经网络进行了比较。结果显示,表现最好的模型包含 14 个堆叠的双层前馈网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Stacked Neural Network Model for Damage Localization.

Traditional vibration-based damage detection methods often involve human intervention in decision-making, therefore being time-consuming and error-prone. In this study, we propose using Artificial Neural Networks (ANNs) to detect patterns in the structural response and create accurate predictions. The features extracted from the response signal are the Relative Frequency Shifts (RFSs) of the first eight weak-axis bending vibration modes, and the predictions refer to the damage location. To increase the accuracy of the predictions, we propose a novel stacked neural network approach, capable of detecting damage locations with high accuracy. The dataset used for training involves, as input data, the RFSs calculated with an original method for numerous damage locations and severities. The following models were used as building blocks for our stacked approach: Multilayer Perceptron, Recurrent Neural Network, Long Short-term Memory, and Gated Recurrent Units. The entire beam was thus split into segments and each network was trained in this stacked model on one beam segment. All results obtained with the models are also compared to a standard neural network trained on the entire beam. The results obtained show that the model that performs the best contains 14 stacked two-layer feedforward networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. A Study of the Effect of Temperature on the Capacitance Characteristics of a Metal-μhemisphere Resonant Gyroscope. Evaluating Alternative Registration Planes in Imageless, Computer-Assisted Navigation Systems for Direct Anterior Total Hip Arthroplasty. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1