{"title":"三维打印碳/玻璃纤维增强尼龙复合材料临界 ZX 打印方向冲击强度的生产参数优化。","authors":"Selim Hartomacioğlu","doi":"10.3390/polym16213006","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing (AM) methods are increasingly being adopted as an alternative for mass production. In particular, Fused Deposition Modeling (FDM) technology is leading the way in this field. However, the adhesion of the layers in products produced using FDM technology is an important issue. These products are particularly vulnerable to forces acting parallel to the layers and especially to impact strength. Most products used in the industry have complex geometries and thin walls. Therefore, solid infill is often required in production, and this production must take place in the ZX orientation. This study aims to optimize the impact strength against loads acting parallel to the layers (ZX orientation) of PA6, one of the most widely used materials in the industry. This orientation is critical in terms of mechanical properties, and the mechanical characteristics are significantly lower compared to other orientations. In this study, filaments containing pure PA6 with 15% short carbon fiber and 30% glass fiber were utilized. Additionally, the printing temperature, layer thickness and heat treatment duration were used as independent variables. An L9 orthogonal array was employed for experimental design and then each experiment was repeated three times to conduct impact strength tests. Characterization, Taguchi optimization, and factor analyses were performed, followed by fracture surface characterization by SEM. As a result, the highest impact strength was achieved with pure PA6 at 8.9 kJ/m<sup>2</sup>, followed by PA6 GF30 at 8.1 kJ/m<sup>2</sup>, and the lowest impact strength was obtained with PA6 CF15 at 6.258 kJ/m<sup>2</sup>. Compared to the literature and manufacturer datasheets, it was concluded that the impact strength values had significantly increased and the chosen experimental factors and their levels, particularly nozzle temperature, were effective.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of Production Parameters for Impact Strength of 3D-Printed Carbon/Glass Fiber-Reinforced Nylon Composite in Critical ZX Printing Orientation.\",\"authors\":\"Selim Hartomacioğlu\",\"doi\":\"10.3390/polym16213006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Additive manufacturing (AM) methods are increasingly being adopted as an alternative for mass production. In particular, Fused Deposition Modeling (FDM) technology is leading the way in this field. However, the adhesion of the layers in products produced using FDM technology is an important issue. These products are particularly vulnerable to forces acting parallel to the layers and especially to impact strength. Most products used in the industry have complex geometries and thin walls. Therefore, solid infill is often required in production, and this production must take place in the ZX orientation. This study aims to optimize the impact strength against loads acting parallel to the layers (ZX orientation) of PA6, one of the most widely used materials in the industry. This orientation is critical in terms of mechanical properties, and the mechanical characteristics are significantly lower compared to other orientations. In this study, filaments containing pure PA6 with 15% short carbon fiber and 30% glass fiber were utilized. Additionally, the printing temperature, layer thickness and heat treatment duration were used as independent variables. An L9 orthogonal array was employed for experimental design and then each experiment was repeated three times to conduct impact strength tests. Characterization, Taguchi optimization, and factor analyses were performed, followed by fracture surface characterization by SEM. As a result, the highest impact strength was achieved with pure PA6 at 8.9 kJ/m<sup>2</sup>, followed by PA6 GF30 at 8.1 kJ/m<sup>2</sup>, and the lowest impact strength was obtained with PA6 CF15 at 6.258 kJ/m<sup>2</sup>. Compared to the literature and manufacturer datasheets, it was concluded that the impact strength values had significantly increased and the chosen experimental factors and their levels, particularly nozzle temperature, were effective.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213006\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213006","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Optimization of Production Parameters for Impact Strength of 3D-Printed Carbon/Glass Fiber-Reinforced Nylon Composite in Critical ZX Printing Orientation.
Additive manufacturing (AM) methods are increasingly being adopted as an alternative for mass production. In particular, Fused Deposition Modeling (FDM) technology is leading the way in this field. However, the adhesion of the layers in products produced using FDM technology is an important issue. These products are particularly vulnerable to forces acting parallel to the layers and especially to impact strength. Most products used in the industry have complex geometries and thin walls. Therefore, solid infill is often required in production, and this production must take place in the ZX orientation. This study aims to optimize the impact strength against loads acting parallel to the layers (ZX orientation) of PA6, one of the most widely used materials in the industry. This orientation is critical in terms of mechanical properties, and the mechanical characteristics are significantly lower compared to other orientations. In this study, filaments containing pure PA6 with 15% short carbon fiber and 30% glass fiber were utilized. Additionally, the printing temperature, layer thickness and heat treatment duration were used as independent variables. An L9 orthogonal array was employed for experimental design and then each experiment was repeated three times to conduct impact strength tests. Characterization, Taguchi optimization, and factor analyses were performed, followed by fracture surface characterization by SEM. As a result, the highest impact strength was achieved with pure PA6 at 8.9 kJ/m2, followed by PA6 GF30 at 8.1 kJ/m2, and the lowest impact strength was obtained with PA6 CF15 at 6.258 kJ/m2. Compared to the literature and manufacturer datasheets, it was concluded that the impact strength values had significantly increased and the chosen experimental factors and their levels, particularly nozzle temperature, were effective.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.