聚乳酸复合材料在汽车领域的应用:评论。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-30 DOI:10.3390/polym16213059
Valentina Giammaria, Monica Capretti, Giulia Del Bianco, Simonetta Boria, Carlo Santulli
{"title":"聚乳酸复合材料在汽车领域的应用:评论。","authors":"Valentina Giammaria, Monica Capretti, Giulia Del Bianco, Simonetta Boria, Carlo Santulli","doi":"10.3390/polym16213059","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of bio-based matrices in automotive applications would, in principle, increase their sustainability and, in case the use of secondary raw materials is also involved, even result in reduced resource depletion. The bio-based polymer composite matrix that has been mainly brought forward towards industrial application is poly(lactic acid) (PLA), which has often been proposed as the replacement for matrices based on polyolefins in fields such as packaging and short-term commodities since, in general, it matches the needs for conventional thermoplastic production processes. The passage to the automotive sector is not obvious, though: problems affecting durability, the relation with water and the environment, together with the requirement for outstanding mechanical and impact performance appear very stringent. On the other hand, PLA has obtained durable success in additive manufacturing as a competitor for acrylonitrile butadiene styrene (ABS). Also, the perspective for 3D and 4D printing does not appear to be confined to bare prototyping. These contrasting pieces of evidence indicate the necessity to provide more insight into the possible development of PLA use in the automotive industry, also considering the pressure for the combined use of more sustainable reinforcement types in automotive composites, such as natural fibers.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of Poly(lactic Acid) Composites in the Automotive Sector: A Critical Review.\",\"authors\":\"Valentina Giammaria, Monica Capretti, Giulia Del Bianco, Simonetta Boria, Carlo Santulli\",\"doi\":\"10.3390/polym16213059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The introduction of bio-based matrices in automotive applications would, in principle, increase their sustainability and, in case the use of secondary raw materials is also involved, even result in reduced resource depletion. The bio-based polymer composite matrix that has been mainly brought forward towards industrial application is poly(lactic acid) (PLA), which has often been proposed as the replacement for matrices based on polyolefins in fields such as packaging and short-term commodities since, in general, it matches the needs for conventional thermoplastic production processes. The passage to the automotive sector is not obvious, though: problems affecting durability, the relation with water and the environment, together with the requirement for outstanding mechanical and impact performance appear very stringent. On the other hand, PLA has obtained durable success in additive manufacturing as a competitor for acrylonitrile butadiene styrene (ABS). Also, the perspective for 3D and 4D printing does not appear to be confined to bare prototyping. These contrasting pieces of evidence indicate the necessity to provide more insight into the possible development of PLA use in the automotive industry, also considering the pressure for the combined use of more sustainable reinforcement types in automotive composites, such as natural fibers.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213059\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在汽车应用中引入生物基基材,原则上可以提高其可持续性,如果还涉及到使用二次原材料,甚至可以减少资源损耗。聚乳酸(PLA)是生物基聚合物复合材料的主要工业应用,在包装和短期商品等领域,聚乳酸(PLA)经常被提议作为聚烯烃基材料的替代品,因为一般来说,聚乳酸(PLA)符合传统热塑性塑料生产工艺的需要。但在汽车领域的应用并不明显:耐久性、与水和环境的关系等问题,以及对出色的机械和冲击性能的要求似乎都非常严格。另一方面,聚乳酸作为丙烯腈-丁二烯-苯乙烯(ABS)的竞争对手,在增材制造领域取得了持久的成功。此外,3D 和 4D 打印的前景似乎并不局限于裸体原型。这些截然不同的证据表明,有必要对聚乳酸在汽车工业中的应用发展提供更多的见解,同时考虑到在汽车复合材料中结合使用更具可持续性的增强材料类型(如天然纤维)的压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Poly(lactic Acid) Composites in the Automotive Sector: A Critical Review.

The introduction of bio-based matrices in automotive applications would, in principle, increase their sustainability and, in case the use of secondary raw materials is also involved, even result in reduced resource depletion. The bio-based polymer composite matrix that has been mainly brought forward towards industrial application is poly(lactic acid) (PLA), which has often been proposed as the replacement for matrices based on polyolefins in fields such as packaging and short-term commodities since, in general, it matches the needs for conventional thermoplastic production processes. The passage to the automotive sector is not obvious, though: problems affecting durability, the relation with water and the environment, together with the requirement for outstanding mechanical and impact performance appear very stringent. On the other hand, PLA has obtained durable success in additive manufacturing as a competitor for acrylonitrile butadiene styrene (ABS). Also, the perspective for 3D and 4D printing does not appear to be confined to bare prototyping. These contrasting pieces of evidence indicate the necessity to provide more insight into the possible development of PLA use in the automotive industry, also considering the pressure for the combined use of more sustainable reinforcement types in automotive composites, such as natural fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery. Coassembly of a Hybrid Synthetic-Biological Chitosan-g-Poly(N-isopropylacrylamide) Copolymer with DNAs of Different Lengths. Correction: El-Hefnawy et al. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers 2022, 14, 318. A Comprehensive Review on the Incremental Sheet Forming of Polycarbonate. Effect of Fiber Cross-Sectional and Surface Properties on the Degradation of Biobased Polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1