Valentina Giammaria, Monica Capretti, Giulia Del Bianco, Simonetta Boria, Carlo Santulli
{"title":"聚乳酸复合材料在汽车领域的应用:评论。","authors":"Valentina Giammaria, Monica Capretti, Giulia Del Bianco, Simonetta Boria, Carlo Santulli","doi":"10.3390/polym16213059","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of bio-based matrices in automotive applications would, in principle, increase their sustainability and, in case the use of secondary raw materials is also involved, even result in reduced resource depletion. The bio-based polymer composite matrix that has been mainly brought forward towards industrial application is poly(lactic acid) (PLA), which has often been proposed as the replacement for matrices based on polyolefins in fields such as packaging and short-term commodities since, in general, it matches the needs for conventional thermoplastic production processes. The passage to the automotive sector is not obvious, though: problems affecting durability, the relation with water and the environment, together with the requirement for outstanding mechanical and impact performance appear very stringent. On the other hand, PLA has obtained durable success in additive manufacturing as a competitor for acrylonitrile butadiene styrene (ABS). Also, the perspective for 3D and 4D printing does not appear to be confined to bare prototyping. These contrasting pieces of evidence indicate the necessity to provide more insight into the possible development of PLA use in the automotive industry, also considering the pressure for the combined use of more sustainable reinforcement types in automotive composites, such as natural fibers.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of Poly(lactic Acid) Composites in the Automotive Sector: A Critical Review.\",\"authors\":\"Valentina Giammaria, Monica Capretti, Giulia Del Bianco, Simonetta Boria, Carlo Santulli\",\"doi\":\"10.3390/polym16213059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The introduction of bio-based matrices in automotive applications would, in principle, increase their sustainability and, in case the use of secondary raw materials is also involved, even result in reduced resource depletion. The bio-based polymer composite matrix that has been mainly brought forward towards industrial application is poly(lactic acid) (PLA), which has often been proposed as the replacement for matrices based on polyolefins in fields such as packaging and short-term commodities since, in general, it matches the needs for conventional thermoplastic production processes. The passage to the automotive sector is not obvious, though: problems affecting durability, the relation with water and the environment, together with the requirement for outstanding mechanical and impact performance appear very stringent. On the other hand, PLA has obtained durable success in additive manufacturing as a competitor for acrylonitrile butadiene styrene (ABS). Also, the perspective for 3D and 4D printing does not appear to be confined to bare prototyping. These contrasting pieces of evidence indicate the necessity to provide more insight into the possible development of PLA use in the automotive industry, also considering the pressure for the combined use of more sustainable reinforcement types in automotive composites, such as natural fibers.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213059\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Application of Poly(lactic Acid) Composites in the Automotive Sector: A Critical Review.
The introduction of bio-based matrices in automotive applications would, in principle, increase their sustainability and, in case the use of secondary raw materials is also involved, even result in reduced resource depletion. The bio-based polymer composite matrix that has been mainly brought forward towards industrial application is poly(lactic acid) (PLA), which has often been proposed as the replacement for matrices based on polyolefins in fields such as packaging and short-term commodities since, in general, it matches the needs for conventional thermoplastic production processes. The passage to the automotive sector is not obvious, though: problems affecting durability, the relation with water and the environment, together with the requirement for outstanding mechanical and impact performance appear very stringent. On the other hand, PLA has obtained durable success in additive manufacturing as a competitor for acrylonitrile butadiene styrene (ABS). Also, the perspective for 3D and 4D printing does not appear to be confined to bare prototyping. These contrasting pieces of evidence indicate the necessity to provide more insight into the possible development of PLA use in the automotive industry, also considering the pressure for the combined use of more sustainable reinforcement types in automotive composites, such as natural fibers.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.