基于高密度聚乙烯和塑化淀粉的混合物的表征。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-30 DOI:10.3390/polym16213051
Maria Daniela Stelescu, Ovidiu-Cristian Oprea, Doina Constantinescu, Ludmila Motelica, Anton Ficai, Roxana-Doina Trusca, Maria Sonmez, Dana Florentina Gurau, Mihai Georgescu, Rodica Roxana Constantinescu, Bogdan-Stefan Vasile, Denisa Ficai
{"title":"基于高密度聚乙烯和塑化淀粉的混合物的表征。","authors":"Maria Daniela Stelescu, Ovidiu-Cristian Oprea, Doina Constantinescu, Ludmila Motelica, Anton Ficai, Roxana-Doina Trusca, Maria Sonmez, Dana Florentina Gurau, Mihai Georgescu, Rodica Roxana Constantinescu, Bogdan-Stefan Vasile, Denisa Ficai","doi":"10.3390/polym16213051","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% <i>w</i>/<i>w</i>), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene terpolymer elastomer, cross-linking agents, and nanoclay. Plasticized starch contains 68.6% <i>w</i>/<i>w</i> potato starch, 29.4% <i>w</i>/<i>w</i> glycerin, and 2% <i>w</i>/<i>w</i> anhydrous citric acid. Blends based on HDPE and plasticized starch were made in a Brabender Plasti-Corder internal mixer at 160 °C, and plates for testing were obtained using the compression method. Thermal analyses indicate an increase in the crystallization degree of the HDPE after the addition of plasticized starch. SEM micrographs indicate that blends are compatibilized, with the plasticized starch being well dispersed as droplets in the HDPE matrix. Samples show high hardness values (62-65° ShD), good tensile strength values (14.88-17.02 N/mm<sup>2</sup>), and Charpy impact strength values (1.08-2.27 kJ/m<sup>2</sup> on notched samples, and 7.96-20.29 kJ/m<sup>2</sup> on unnotched samples). After 72 h of water immersion at room temperature, mixtures containing a compatibilizer had a mass variation below 1% and water absorption values below 1.7%. Upon increasing the water immersion temperature to 80 °C, the sample without the compatibilizer showed a mass reduction of -2.23%, indicating the dissolution of the plasticized starch in the water. The samples containing the compatibilizer had a mass variation of max 8.33% and a water absorption of max 5.02%. After toluene immersion for 72 h at room temperature, mass variation was below 8%.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch.\",\"authors\":\"Maria Daniela Stelescu, Ovidiu-Cristian Oprea, Doina Constantinescu, Ludmila Motelica, Anton Ficai, Roxana-Doina Trusca, Maria Sonmez, Dana Florentina Gurau, Mihai Georgescu, Rodica Roxana Constantinescu, Bogdan-Stefan Vasile, Denisa Ficai\",\"doi\":\"10.3390/polym16213051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% <i>w</i>/<i>w</i>), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene terpolymer elastomer, cross-linking agents, and nanoclay. Plasticized starch contains 68.6% <i>w</i>/<i>w</i> potato starch, 29.4% <i>w</i>/<i>w</i> glycerin, and 2% <i>w</i>/<i>w</i> anhydrous citric acid. Blends based on HDPE and plasticized starch were made in a Brabender Plasti-Corder internal mixer at 160 °C, and plates for testing were obtained using the compression method. Thermal analyses indicate an increase in the crystallization degree of the HDPE after the addition of plasticized starch. SEM micrographs indicate that blends are compatibilized, with the plasticized starch being well dispersed as droplets in the HDPE matrix. Samples show high hardness values (62-65° ShD), good tensile strength values (14.88-17.02 N/mm<sup>2</sup>), and Charpy impact strength values (1.08-2.27 kJ/m<sup>2</sup> on notched samples, and 7.96-20.29 kJ/m<sup>2</sup> on unnotched samples). After 72 h of water immersion at room temperature, mixtures containing a compatibilizer had a mass variation below 1% and water absorption values below 1.7%. Upon increasing the water immersion temperature to 80 °C, the sample without the compatibilizer showed a mass reduction of -2.23%, indicating the dissolution of the plasticized starch in the water. The samples containing the compatibilizer had a mass variation of max 8.33% and a water absorption of max 5.02%. After toluene immersion for 72 h at room temperature, mass variation was below 8%.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213051\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213051","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于高密度聚乙烯(HDPE)和塑化淀粉的混合物的获得和特性分析。除塑化淀粉(28.8% w/w)外,所制得的混合物还含有其他成分,如作为相容剂的聚乙烯接枝马来酸酐、乙烯丙烯三元共聚弹性体、交联剂和纳米粘土。塑化淀粉含有 68.6% w/w 马铃薯淀粉、29.4% w/w 甘油和 2% w/w 无水柠檬酸。以高密度聚乙烯和塑化淀粉为基础的混合物是在 160 °C 下用 Brabender Plasti-Corder 内部混合器制成的,并使用压缩法获得了用于测试的板材。热分析表明,加入塑化淀粉后,高密度聚乙烯的结晶度增加。扫描电镜显微照片显示,混合物具有相容性,塑化淀粉以液滴形式很好地分散在高密度聚乙烯基体中。样品显示出较高的硬度值(62-65° ShD)、良好的拉伸强度值(14.88-17.02 N/mm2)和夏比冲击强度值(缺口样品为 1.08-2.27 kJ/m2,未缺口样品为 7.96-20.29 kJ/m2)。在室温下浸水 72 小时后,含有相容剂的混合物的质量变化低于 1%,吸水率低于 1.7%。当水浸温度升至 80 ℃ 时,未添加相容剂的样品质量减少了 -2.23%,表明塑化淀粉已溶解在水中。含有相容剂的样品质量变化最大为 8.33%,吸水率最大为 5.02%。在室温下用甲苯浸泡 72 小时后,质量变化低于 8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch.

This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% w/w), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene terpolymer elastomer, cross-linking agents, and nanoclay. Plasticized starch contains 68.6% w/w potato starch, 29.4% w/w glycerin, and 2% w/w anhydrous citric acid. Blends based on HDPE and plasticized starch were made in a Brabender Plasti-Corder internal mixer at 160 °C, and plates for testing were obtained using the compression method. Thermal analyses indicate an increase in the crystallization degree of the HDPE after the addition of plasticized starch. SEM micrographs indicate that blends are compatibilized, with the plasticized starch being well dispersed as droplets in the HDPE matrix. Samples show high hardness values (62-65° ShD), good tensile strength values (14.88-17.02 N/mm2), and Charpy impact strength values (1.08-2.27 kJ/m2 on notched samples, and 7.96-20.29 kJ/m2 on unnotched samples). After 72 h of water immersion at room temperature, mixtures containing a compatibilizer had a mass variation below 1% and water absorption values below 1.7%. Upon increasing the water immersion temperature to 80 °C, the sample without the compatibilizer showed a mass reduction of -2.23%, indicating the dissolution of the plasticized starch in the water. The samples containing the compatibilizer had a mass variation of max 8.33% and a water absorption of max 5.02%. After toluene immersion for 72 h at room temperature, mass variation was below 8%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery. Coassembly of a Hybrid Synthetic-Biological Chitosan-g-Poly(N-isopropylacrylamide) Copolymer with DNAs of Different Lengths. Correction: El-Hefnawy et al. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers 2022, 14, 318. A Comprehensive Review on the Incremental Sheet Forming of Polycarbonate. Effect of Fiber Cross-Sectional and Surface Properties on the Degradation of Biobased Polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1