评估结合多元分析的近红外和近红外光谱仪在烟草制品中添加剂的检测和定量。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217018
Zeb Akhtar, Michaël Canfyn, Céline Vanhee, Cédric Delporte, Erwin Adams, Eric Deconinck
{"title":"评估结合多元分析的近红外和近红外光谱仪在烟草制品中添加剂的检测和定量。","authors":"Zeb Akhtar, Michaël Canfyn, Céline Vanhee, Cédric Delporte, Erwin Adams, Eric Deconinck","doi":"10.3390/s24217018","DOIUrl":null,"url":null,"abstract":"<p><p>The detection and quantification of additives in tobacco products are critical for ensuring consumer safety and compliance with regulatory standards. Traditional analytical techniques, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and others, although effective, suffer from drawbacks, including complex sample preparation, high costs, lengthy analysis times, and the requirement for skilled operators. This study addresses these challenges by evaluating the efficacy of mid-infrared (MIR) spectroscopy and near-IR (NIR) spectroscopy, coupled with multivariate analysis, as potential solutions for the detection and quantification of additives in tobacco products. So, a representative set of tobacco products was selected and spiked with the targeted additives, namely caffeine, menthol, glycerol, and cocoa. Multivariate analysis of MIR and NIR spectra consisted of principal component analysis (PCA), hierarchical clustering analysis (HCA), partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) to classify samples based on targeted additives. Based on the unsupervised techniques (PCA and HCA), a distinction could be made between spiked and non-spiked samples for all four targeted additives based on both MIR and NIR spectral data. During supervised analysis, SIMCA achieved 87-100% classification accuracy for the different additives and for both spectroscopic techniques. PLS-DA models showed classification rates of 80% to 100%, also demonstrating robust performance. Regression studies, using PLS, showed that it is possible to effectively estimate the concentration levels of the targeted molecules. The results also highlight the necessity of optimizing data pretreatment for accurate quantification of the target additives. Overall, NIR spectroscopy combined with SIMCA provided the most accurate and robust classification models for all target molecules, indicating that it is the most effective single technique for this type of analysis. MIR, on the other hand, showed the overall best performance for quantitative estimation.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548177/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating MIR and NIR Spectroscopy Coupled with Multivariate Analysis for Detection and Quantification of Additives in Tobacco Products.\",\"authors\":\"Zeb Akhtar, Michaël Canfyn, Céline Vanhee, Cédric Delporte, Erwin Adams, Eric Deconinck\",\"doi\":\"10.3390/s24217018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection and quantification of additives in tobacco products are critical for ensuring consumer safety and compliance with regulatory standards. Traditional analytical techniques, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and others, although effective, suffer from drawbacks, including complex sample preparation, high costs, lengthy analysis times, and the requirement for skilled operators. This study addresses these challenges by evaluating the efficacy of mid-infrared (MIR) spectroscopy and near-IR (NIR) spectroscopy, coupled with multivariate analysis, as potential solutions for the detection and quantification of additives in tobacco products. So, a representative set of tobacco products was selected and spiked with the targeted additives, namely caffeine, menthol, glycerol, and cocoa. Multivariate analysis of MIR and NIR spectra consisted of principal component analysis (PCA), hierarchical clustering analysis (HCA), partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) to classify samples based on targeted additives. Based on the unsupervised techniques (PCA and HCA), a distinction could be made between spiked and non-spiked samples for all four targeted additives based on both MIR and NIR spectral data. During supervised analysis, SIMCA achieved 87-100% classification accuracy for the different additives and for both spectroscopic techniques. PLS-DA models showed classification rates of 80% to 100%, also demonstrating robust performance. Regression studies, using PLS, showed that it is possible to effectively estimate the concentration levels of the targeted molecules. The results also highlight the necessity of optimizing data pretreatment for accurate quantification of the target additives. Overall, NIR spectroscopy combined with SIMCA provided the most accurate and robust classification models for all target molecules, indicating that it is the most effective single technique for this type of analysis. MIR, on the other hand, showed the overall best performance for quantitative estimation.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217018\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217018","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

检测和量化烟草制品中的添加剂对于确保消费者安全和符合监管标准至关重要。传统的分析技术,如气相色谱-质谱法(GC-MS)、液相色谱-质谱法(LC-MS)等,虽然有效,但也存在缺点,包括样品制备复杂、成本高、分析时间长以及需要熟练的操作人员。为了应对这些挑战,本研究评估了中红外(MIR)光谱法和近红外(NIR)光谱法的功效,并将其与多元分析相结合,作为检测和定量烟草制品中添加剂的潜在解决方案。因此,我们选择了一组具有代表性的烟草制品,并在其中添加了目标添加剂,即咖啡因、薄荷醇、甘油和可可。对中红外光谱和近红外光谱的多元分析包括主成分分析(PCA)、分层聚类分析(HCA)、偏最小二乘判别分析(PLS-DA)和类比软独立建模(SIMCA),以根据目标添加剂对样品进行分类。基于无监督技术(PCA 和 HCA),可以根据近红外和近红外光谱数据对所有四种目标添加剂的加标样品和非加标样品进行区分。在监督分析过程中,SIMCA 对不同添加剂和两种光谱技术的分类准确率达到了 87%-100%。PLS-DA 模型的分类率为 80% 至 100%,同样表现出稳健的性能。使用 PLS 进行的回归研究表明,可以有效估计目标分子的浓度水平。研究结果还强调了优化数据预处理以准确量化目标添加剂的必要性。总体而言,近红外光谱结合 SIMCA 为所有目标分子提供了最准确、最稳健的分类模型,这表明近红外光谱是此类分析中最有效的单一技术。另一方面,近红外光谱在定量估计方面表现出最佳的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating MIR and NIR Spectroscopy Coupled with Multivariate Analysis for Detection and Quantification of Additives in Tobacco Products.

The detection and quantification of additives in tobacco products are critical for ensuring consumer safety and compliance with regulatory standards. Traditional analytical techniques, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and others, although effective, suffer from drawbacks, including complex sample preparation, high costs, lengthy analysis times, and the requirement for skilled operators. This study addresses these challenges by evaluating the efficacy of mid-infrared (MIR) spectroscopy and near-IR (NIR) spectroscopy, coupled with multivariate analysis, as potential solutions for the detection and quantification of additives in tobacco products. So, a representative set of tobacco products was selected and spiked with the targeted additives, namely caffeine, menthol, glycerol, and cocoa. Multivariate analysis of MIR and NIR spectra consisted of principal component analysis (PCA), hierarchical clustering analysis (HCA), partial least squares-discriminant analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) to classify samples based on targeted additives. Based on the unsupervised techniques (PCA and HCA), a distinction could be made between spiked and non-spiked samples for all four targeted additives based on both MIR and NIR spectral data. During supervised analysis, SIMCA achieved 87-100% classification accuracy for the different additives and for both spectroscopic techniques. PLS-DA models showed classification rates of 80% to 100%, also demonstrating robust performance. Regression studies, using PLS, showed that it is possible to effectively estimate the concentration levels of the targeted molecules. The results also highlight the necessity of optimizing data pretreatment for accurate quantification of the target additives. Overall, NIR spectroscopy combined with SIMCA provided the most accurate and robust classification models for all target molecules, indicating that it is the most effective single technique for this type of analysis. MIR, on the other hand, showed the overall best performance for quantitative estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Privacy-Preserving Synthetic Data Generation Method for IoT-Sensor Network IDS Using CTGAN. Energy Efficiency for 5G and Beyond 5G: Potential, Limitations, and Future Directions. Enhanced Fault Detection in Photovoltaic Panels Using CNN-Based Classification with PyQt5 Implementation. Adaptive Kernel Convolutional Stereo Matching Recurrent Network. Enhancing Direction-of-Arrival Estimation with Multi-Task Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1