Miroslaw Pluta, Joanna Bojda, Mariia Svyntkivska, Tomasz Makowski, Ele L de Boer, Ewa Piorkowska
{"title":"生物基聚(乙烯-2,5-呋喃二甲酸酯)的结晶控制结构和热性能。","authors":"Miroslaw Pluta, Joanna Bojda, Mariia Svyntkivska, Tomasz Makowski, Ele L de Boer, Ewa Piorkowska","doi":"10.3390/polym16213052","DOIUrl":null,"url":null,"abstract":"<p><p>Crystallization-controlled structure and thermal properties of biobased poly(ethylene 2,5-furandicarboxylate) (PEF) were studied. The cold-crystallization temperature controlled the structure and thermal properties of the biobased PEF. The melting was complex and evidenced the presence of a significant fraction of less-stable crystals with a low melting temperature that linearly increased with <i>T</i><sub>c</sub>, which formed already during the early stages of crystallization, together with those melting at a higher temperature. Low <i>T</i><sub>c</sub> resulted in the α'-phase formation, less crystallinity, and greater content of the rigid amorphous phase. At high <i>T</i><sub>c</sub>, the α-phase formed, higher crystallinity developed, the rigid amorphous phase content was lower, and the melting temperature of the less-stable crystals was higher; however, slight polymer degradation could have occurred. The applied thermal treatment altered the thermal behavior of PEF by shifting the melting of the less stable crystals to a significantly higher temperature. SEM examination revealed a spherulitic morphology. A lamellar order was evidenced with an average long period and small average lamella thickness, the latter about 3-3.5 nm, only slightly increasing with <i>T</i><sub>c</sub>.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate).\",\"authors\":\"Miroslaw Pluta, Joanna Bojda, Mariia Svyntkivska, Tomasz Makowski, Ele L de Boer, Ewa Piorkowska\",\"doi\":\"10.3390/polym16213052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crystallization-controlled structure and thermal properties of biobased poly(ethylene 2,5-furandicarboxylate) (PEF) were studied. The cold-crystallization temperature controlled the structure and thermal properties of the biobased PEF. The melting was complex and evidenced the presence of a significant fraction of less-stable crystals with a low melting temperature that linearly increased with <i>T</i><sub>c</sub>, which formed already during the early stages of crystallization, together with those melting at a higher temperature. Low <i>T</i><sub>c</sub> resulted in the α'-phase formation, less crystallinity, and greater content of the rigid amorphous phase. At high <i>T</i><sub>c</sub>, the α-phase formed, higher crystallinity developed, the rigid amorphous phase content was lower, and the melting temperature of the less-stable crystals was higher; however, slight polymer degradation could have occurred. The applied thermal treatment altered the thermal behavior of PEF by shifting the melting of the less stable crystals to a significantly higher temperature. SEM examination revealed a spherulitic morphology. A lamellar order was evidenced with an average long period and small average lamella thickness, the latter about 3-3.5 nm, only slightly increasing with <i>T</i><sub>c</sub>.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213052\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213052","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate).
Crystallization-controlled structure and thermal properties of biobased poly(ethylene 2,5-furandicarboxylate) (PEF) were studied. The cold-crystallization temperature controlled the structure and thermal properties of the biobased PEF. The melting was complex and evidenced the presence of a significant fraction of less-stable crystals with a low melting temperature that linearly increased with Tc, which formed already during the early stages of crystallization, together with those melting at a higher temperature. Low Tc resulted in the α'-phase formation, less crystallinity, and greater content of the rigid amorphous phase. At high Tc, the α-phase formed, higher crystallinity developed, the rigid amorphous phase content was lower, and the melting temperature of the less-stable crystals was higher; however, slight polymer degradation could have occurred. The applied thermal treatment altered the thermal behavior of PEF by shifting the melting of the less stable crystals to a significantly higher temperature. SEM examination revealed a spherulitic morphology. A lamellar order was evidenced with an average long period and small average lamella thickness, the latter about 3-3.5 nm, only slightly increasing with Tc.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.