OsIAA23 通过直接下调水稻中的 Ghd7 来促进头状花序。

IF 4.8 1区 农林科学 Q1 AGRONOMY Rice Pub Date : 2024-11-15 DOI:10.1186/s12284-024-00750-8
Jia Zhang, Wei Hu, Qingli Wen, Xiaowei Fan, Yong Hu, Qin He, Li Lu, Jinfeng Li, Yongzhong Xing
{"title":"OsIAA23 通过直接下调水稻中的 Ghd7 来促进头状花序。","authors":"Jia Zhang, Wei Hu, Qingli Wen, Xiaowei Fan, Yong Hu, Qin He, Li Lu, Jinfeng Li, Yongzhong Xing","doi":"10.1186/s12284-024-00750-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ghd7 is a central regulator to multiple growth and development processes in rice. While it is not clear how Ghd7 is regulated by upstream factors. To identify its upstream regulator, the truncated Ghd7 promoter fragments were used to screen cis elements binding to rice total nuclear proteins. Electrophoretic mobility shift assays screened one truncated fragment f3 binding to the proteins. Subsequently, the fragment f3 was employed to screen a yeast one-hybrid library, and a transcription factor OsIAA23 was screened as a direct upstream regulator of Ghd7. Dual-luciferase transient assay demonstrated the transcriptional repression effect of OsIAA23 on the activity of Ghd7, and the location of the cis elements binding to OsIAA23 in the region 1264 to 1255 bp upstream of ATG. Genetic analysis between the wild type Ghd7-OsIAA23 and single/double mutants further verified that OsIAA23 downregulated Ghd7 expression and led to a delayed heading under long day conditions. Moreover, natural variations in fragment f3 were associated with heading and geographic distribution in rice. This study sheds light on the direct regulatory mechanism of OsIAA23 on Ghd7, which enriches the understanding of the Ghd7 involved flowering regulatory network in rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"70"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564490/pdf/","citationCount":"0","resultStr":"{\"title\":\"OsIAA23 Promotes Heading by Directly Downregulating Ghd7 in rice.\",\"authors\":\"Jia Zhang, Wei Hu, Qingli Wen, Xiaowei Fan, Yong Hu, Qin He, Li Lu, Jinfeng Li, Yongzhong Xing\",\"doi\":\"10.1186/s12284-024-00750-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ghd7 is a central regulator to multiple growth and development processes in rice. While it is not clear how Ghd7 is regulated by upstream factors. To identify its upstream regulator, the truncated Ghd7 promoter fragments were used to screen cis elements binding to rice total nuclear proteins. Electrophoretic mobility shift assays screened one truncated fragment f3 binding to the proteins. Subsequently, the fragment f3 was employed to screen a yeast one-hybrid library, and a transcription factor OsIAA23 was screened as a direct upstream regulator of Ghd7. Dual-luciferase transient assay demonstrated the transcriptional repression effect of OsIAA23 on the activity of Ghd7, and the location of the cis elements binding to OsIAA23 in the region 1264 to 1255 bp upstream of ATG. Genetic analysis between the wild type Ghd7-OsIAA23 and single/double mutants further verified that OsIAA23 downregulated Ghd7 expression and led to a delayed heading under long day conditions. Moreover, natural variations in fragment f3 were associated with heading and geographic distribution in rice. This study sheds light on the direct regulatory mechanism of OsIAA23 on Ghd7, which enriches the understanding of the Ghd7 involved flowering regulatory network in rice.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"17 1\",\"pages\":\"70\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-024-00750-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-024-00750-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

Ghd7 是水稻多个生长和发育过程的核心调节因子。虽然目前还不清楚 Ghd7 是如何受上游因子调控的。为了确定其上游调控因子,研究人员利用截短的 Ghd7 启动子片段筛选与水稻全核蛋白结合的顺式元件。电泳迁移试验筛选出一个与蛋白质结合的截短片段 f3。随后,利用该片段 f3 筛选了酵母单杂交文库,并筛选出转录因子 OsIAA23 作为 Ghd7 的直接上游调控因子。双荧光素酶瞬时分析表明,OsIAA23对Ghd7的活性有转录抑制作用,与OsIAA23结合的顺式元件位于ATG上游1264至1255 bp区域。野生型 Ghd7-OsIAA23 与单/双突变体之间的遗传分析进一步验证了 OsIAA23 下调了 Ghd7 的表达,并导致长日照条件下的延迟顶端。此外,片段 f3 的自然变异与水稻的抽穗和地理分布有关。本研究揭示了 OsIAA23 对 Ghd7 的直接调控机制,丰富了对 Ghd7 参与水稻开花调控网络的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OsIAA23 Promotes Heading by Directly Downregulating Ghd7 in rice.

Ghd7 is a central regulator to multiple growth and development processes in rice. While it is not clear how Ghd7 is regulated by upstream factors. To identify its upstream regulator, the truncated Ghd7 promoter fragments were used to screen cis elements binding to rice total nuclear proteins. Electrophoretic mobility shift assays screened one truncated fragment f3 binding to the proteins. Subsequently, the fragment f3 was employed to screen a yeast one-hybrid library, and a transcription factor OsIAA23 was screened as a direct upstream regulator of Ghd7. Dual-luciferase transient assay demonstrated the transcriptional repression effect of OsIAA23 on the activity of Ghd7, and the location of the cis elements binding to OsIAA23 in the region 1264 to 1255 bp upstream of ATG. Genetic analysis between the wild type Ghd7-OsIAA23 and single/double mutants further verified that OsIAA23 downregulated Ghd7 expression and led to a delayed heading under long day conditions. Moreover, natural variations in fragment f3 were associated with heading and geographic distribution in rice. This study sheds light on the direct regulatory mechanism of OsIAA23 on Ghd7, which enriches the understanding of the Ghd7 involved flowering regulatory network in rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
期刊最新文献
OsIAA23 Promotes Heading by Directly Downregulating Ghd7 in rice. Multifunctional Transcription Factor YABBY6 Regulates Morphogenesis, Drought and Cold Stress Responses in Rice. OsPIPK-FAB, A Negative Regulator in Rice Immunity Unveiled by OsMBL1 Inhibition. CRISPR-Based Modulation of uORFs in DEP1 and GIF1 for Enhanced Rice Yield Traits. Indole-3-Acetic Acid (IAA) and Sugar Mediate Endosperm Development in Rice (Oryza sativa L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1