青壮年步态和坐立运动的运动学数据集。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-09 DOI:10.1038/s41597-024-04020-6
Simon Hanisch, Loreen Pogrzeba, Evelyn Muschter, Shu-Chen Li, Thorsten Strufe
{"title":"青壮年步态和坐立运动的运动学数据集。","authors":"Simon Hanisch, Loreen Pogrzeba, Evelyn Muschter, Shu-Chen Li, Thorsten Strufe","doi":"10.1038/s41597-024-04020-6","DOIUrl":null,"url":null,"abstract":"<p><p>Kinematic data is a valuable source of movement information that provides insights into the health status, mental state, and motor skills of individuals. Additionally, kinematic data can serve as biometric data, enabling the identification of personal characteristics such as height, weight, and sex. In CeTI-Locomotion, four types of walking tasks and the 5 times sit-to-stand test (5RSTST) were recorded from 50 young adults wearing motion capture (mocap) suits equipped with Inertia-Measurement-Units (IMU). Our dataset is unique in that it allows the study of both intra- and inter-participant variability with high quality kinematic motion data for different motion tasks. Along with the raw kinematic data, we provide the source code for phase segmentation and the processed data, which has been segmented into a total of 4672 individual motion repetitions. To validate the data, we conducted visual inspection as well as machine-learning based identity and action recognition tests, achieving 97% and 84% accuracy, respectively. The data can serve as a normative reference of gait and sit-to-stand movements in healthy young adults and as training data for biometric recognition.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1209"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550319/pdf/","citationCount":"0","resultStr":"{\"title\":\"A kinematic dataset of locomotion with gait and sit-to-stand movements of young adults.\",\"authors\":\"Simon Hanisch, Loreen Pogrzeba, Evelyn Muschter, Shu-Chen Li, Thorsten Strufe\",\"doi\":\"10.1038/s41597-024-04020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kinematic data is a valuable source of movement information that provides insights into the health status, mental state, and motor skills of individuals. Additionally, kinematic data can serve as biometric data, enabling the identification of personal characteristics such as height, weight, and sex. In CeTI-Locomotion, four types of walking tasks and the 5 times sit-to-stand test (5RSTST) were recorded from 50 young adults wearing motion capture (mocap) suits equipped with Inertia-Measurement-Units (IMU). Our dataset is unique in that it allows the study of both intra- and inter-participant variability with high quality kinematic motion data for different motion tasks. Along with the raw kinematic data, we provide the source code for phase segmentation and the processed data, which has been segmented into a total of 4672 individual motion repetitions. To validate the data, we conducted visual inspection as well as machine-learning based identity and action recognition tests, achieving 97% and 84% accuracy, respectively. The data can serve as a normative reference of gait and sit-to-stand movements in healthy young adults and as training data for biometric recognition.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1209\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04020-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04020-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

运动学数据是一种宝贵的运动信息来源,可帮助人们深入了解个人的健康状况、精神状态和运动技能。此外,运动学数据还可作为生物识别数据,用于识别个人特征,如身高、体重和性别。在 CeTI-Locomotion 中,我们记录了 50 名年轻成年人的四种步行任务和五次坐立测试(5RSTST),他们都穿上了配备惯性测量单元(IMU)的运动捕捉(mocap)服。我们的数据集具有独特性,因为它可以利用不同运动任务的高质量运动学数据研究参与者内部和参与者之间的变异性。除了原始运动学数据,我们还提供了相位分割的源代码和经过处理的数据,这些数据已被分割成总共 4672 个单独的运动重复。为了验证这些数据,我们进行了视觉检测以及基于机器学习的身份和动作识别测试,准确率分别达到 97% 和 84%。这些数据可作为健康年轻人步态和坐立运动的标准参考,也可作为生物识别的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A kinematic dataset of locomotion with gait and sit-to-stand movements of young adults.

Kinematic data is a valuable source of movement information that provides insights into the health status, mental state, and motor skills of individuals. Additionally, kinematic data can serve as biometric data, enabling the identification of personal characteristics such as height, weight, and sex. In CeTI-Locomotion, four types of walking tasks and the 5 times sit-to-stand test (5RSTST) were recorded from 50 young adults wearing motion capture (mocap) suits equipped with Inertia-Measurement-Units (IMU). Our dataset is unique in that it allows the study of both intra- and inter-participant variability with high quality kinematic motion data for different motion tasks. Along with the raw kinematic data, we provide the source code for phase segmentation and the processed data, which has been segmented into a total of 4672 individual motion repetitions. To validate the data, we conducted visual inspection as well as machine-learning based identity and action recognition tests, achieving 97% and 84% accuracy, respectively. The data can serve as a normative reference of gait and sit-to-stand movements in healthy young adults and as training data for biometric recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A 3D dental model dataset with pre/post-orthodontic treatment for automatic tooth alignment. A Database of Stress-Strain Properties Auto-generated from the Scientific Literature using ChemDataExtractor. A multi-region single nucleus transcriptomic atlas of Parkinson's disease. A reference quality, fully annotated diploid genome from a Saudi individual. An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1