{"title":"基于雅可比显著图的跳频信号分类与识别,用于对抗性样本攻击方法。","authors":"Yanhan Zhu, Yong Li, Tianyi Wei","doi":"10.3390/s24217070","DOIUrl":null,"url":null,"abstract":"<p><p>Frequency-hopping (FH) communication adversarial research is a key area in modern electronic countermeasures. To address the challenge posed by interfering parties that use deep neural networks (DNNs) to classify and identify multiple intercepted FH signals-enabling targeted interference and degrading communication performance-this paper presents a batch feature point targetless adversarial sample generation method based on the Jacobi saliency map (BPNT-JSMA). This method builds on the traditional JSMA to generate feature saliency maps, selects the top 8% of salient feature points in batches for perturbation, and increases the perturbation limit to restrict the extreme values of single-point perturbations. Experimental results in a white-box environment show that, compared with the traditional JSMA method, BPNT-JSMA not only maintains a high attack success rate but also enhances attack efficiency and improves the stealthiness of the adversarial samples.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification and Identification of Frequency-Hopping Signals Based on Jacobi Salient Map for Adversarial Sample Attack Approach.\",\"authors\":\"Yanhan Zhu, Yong Li, Tianyi Wei\",\"doi\":\"10.3390/s24217070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Frequency-hopping (FH) communication adversarial research is a key area in modern electronic countermeasures. To address the challenge posed by interfering parties that use deep neural networks (DNNs) to classify and identify multiple intercepted FH signals-enabling targeted interference and degrading communication performance-this paper presents a batch feature point targetless adversarial sample generation method based on the Jacobi saliency map (BPNT-JSMA). This method builds on the traditional JSMA to generate feature saliency maps, selects the top 8% of salient feature points in batches for perturbation, and increases the perturbation limit to restrict the extreme values of single-point perturbations. Experimental results in a white-box environment show that, compared with the traditional JSMA method, BPNT-JSMA not only maintains a high attack success rate but also enhances attack efficiency and improves the stealthiness of the adversarial samples.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217070\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217070","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Classification and Identification of Frequency-Hopping Signals Based on Jacobi Salient Map for Adversarial Sample Attack Approach.
Frequency-hopping (FH) communication adversarial research is a key area in modern electronic countermeasures. To address the challenge posed by interfering parties that use deep neural networks (DNNs) to classify and identify multiple intercepted FH signals-enabling targeted interference and degrading communication performance-this paper presents a batch feature point targetless adversarial sample generation method based on the Jacobi saliency map (BPNT-JSMA). This method builds on the traditional JSMA to generate feature saliency maps, selects the top 8% of salient feature points in batches for perturbation, and increases the perturbation limit to restrict the extreme values of single-point perturbations. Experimental results in a white-box environment show that, compared with the traditional JSMA method, BPNT-JSMA not only maintains a high attack success rate but also enhances attack efficiency and improves the stealthiness of the adversarial samples.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.