{"title":"DDAM-Net:用于耕地变化检测的差分定向多尺度注意机制网络","authors":"Junbiao Feng, Haikun Yu, Xiaoping Lu, Xiaoran Lv, Junli Zhou","doi":"10.3390/s24217040","DOIUrl":null,"url":null,"abstract":"<p><p>Declining cultivated land poses a serious threat to food security. However, existing Change Detection (CD) methods are insufficient for overcoming intra-class differences in cropland, and the accumulation of irrelevant features and loss of key features leads to poor detection results. To effectively identify changes in agricultural land, we propose a Difference-Directed Multi-scale Attention Mechanism Network (DDAM-Net). Specifically, we use a feature extraction module to effectively extract the cropland's multi-scale features from dual-temporal images, and we introduce a Difference Enhancement Fusion Module (DEFM) and a Cross-scale Aggregation Module (CAM) to pass and fuse the multi-scale and difference features layer by layer. In addition, we introduce the Attention Refinement Module (ARM) to optimize the edge and detail features of changing objects. In the experiments, we evaluated the applicability of DDAM-Net on the HN-CLCD dataset for cropland CD and non-agricultural identification, with F1 and precision of 79.27% and 80.70%, respectively. In addition, generalization experiments using the publicly accessible PX-CLCD and SET-CLCD datasets revealed F1 and precision values of 95.12% and 95.47%, and 72.40% and 77.59%, respectively. The relevant comparative and ablation experiments suggested that DDAM-Net has greater performance and reliability in detecting cropland changes.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548556/pdf/","citationCount":"0","resultStr":"{\"title\":\"DDAM-Net: A Difference-Directed Multi-Scale Attention Mechanism Network for Cultivated Land Change Detection.\",\"authors\":\"Junbiao Feng, Haikun Yu, Xiaoping Lu, Xiaoran Lv, Junli Zhou\",\"doi\":\"10.3390/s24217040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Declining cultivated land poses a serious threat to food security. However, existing Change Detection (CD) methods are insufficient for overcoming intra-class differences in cropland, and the accumulation of irrelevant features and loss of key features leads to poor detection results. To effectively identify changes in agricultural land, we propose a Difference-Directed Multi-scale Attention Mechanism Network (DDAM-Net). Specifically, we use a feature extraction module to effectively extract the cropland's multi-scale features from dual-temporal images, and we introduce a Difference Enhancement Fusion Module (DEFM) and a Cross-scale Aggregation Module (CAM) to pass and fuse the multi-scale and difference features layer by layer. In addition, we introduce the Attention Refinement Module (ARM) to optimize the edge and detail features of changing objects. In the experiments, we evaluated the applicability of DDAM-Net on the HN-CLCD dataset for cropland CD and non-agricultural identification, with F1 and precision of 79.27% and 80.70%, respectively. In addition, generalization experiments using the publicly accessible PX-CLCD and SET-CLCD datasets revealed F1 and precision values of 95.12% and 95.47%, and 72.40% and 77.59%, respectively. The relevant comparative and ablation experiments suggested that DDAM-Net has greater performance and reliability in detecting cropland changes.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217040\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217040","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
DDAM-Net: A Difference-Directed Multi-Scale Attention Mechanism Network for Cultivated Land Change Detection.
Declining cultivated land poses a serious threat to food security. However, existing Change Detection (CD) methods are insufficient for overcoming intra-class differences in cropland, and the accumulation of irrelevant features and loss of key features leads to poor detection results. To effectively identify changes in agricultural land, we propose a Difference-Directed Multi-scale Attention Mechanism Network (DDAM-Net). Specifically, we use a feature extraction module to effectively extract the cropland's multi-scale features from dual-temporal images, and we introduce a Difference Enhancement Fusion Module (DEFM) and a Cross-scale Aggregation Module (CAM) to pass and fuse the multi-scale and difference features layer by layer. In addition, we introduce the Attention Refinement Module (ARM) to optimize the edge and detail features of changing objects. In the experiments, we evaluated the applicability of DDAM-Net on the HN-CLCD dataset for cropland CD and non-agricultural identification, with F1 and precision of 79.27% and 80.70%, respectively. In addition, generalization experiments using the publicly accessible PX-CLCD and SET-CLCD datasets revealed F1 and precision values of 95.12% and 95.47%, and 72.40% and 77.59%, respectively. The relevant comparative and ablation experiments suggested that DDAM-Net has greater performance and reliability in detecting cropland changes.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.