{"title":"基于交叉注意力的类对齐网络,用于异质空间中的跨主体脑电图分类。","authors":"Sufan Ma, Dongxiao Zhang","doi":"10.3390/s24217080","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Domain adaptation (DA) techniques have emerged as a pivotal strategy in addressing the challenges of cross-subject classification. However, traditional DA methods are inherently limited by the assumption of a homogeneous space, requiring that the source and target domains share identical feature dimensions and label sets, which is often impractical in real-world applications. Therefore, effectively addressing the challenge of EEG classification under heterogeneous spaces has emerged as a crucial research topic.</p><p><strong>Methods: </strong>We present a comprehensive framework that addresses the challenges of heterogeneous spaces by implementing a cross-domain class alignment strategy. We innovatively construct a cross-encoder to effectively capture the intricate dependencies between data across domains. We also introduce a tailored class discriminator accompanied by a corresponding loss function. By optimizing the loss function, we facilitate the aggregation of features with corresponding classes between the source and target domains, while ensuring that features from non-corresponding classes are dispersed.</p><p><strong>Results: </strong>Extensive experiments were conducted on two publicly available EEG datasets. Compared to advanced methods that combine label alignment with transfer learning, our method demonstrated superior performance across five heterogeneous space scenarios. Notably, in four heterogeneous label space scenarios, our method outperformed the advanced methods by an average of 7.8%. Moreover, in complex scenarios involving both heterogeneous label spaces and heterogeneous feature spaces, our method outperformed the state-of-the-art methods by an average of 4.1%.</p><p><strong>Conclusions: </strong>This paper presents an efficient model for cross-subject EEG classification under heterogeneous spaces, which significantly addresses the challenges of EEG classification within heterogeneous spaces, thereby opening up new perspectives and avenues for research in related fields.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548574/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Cross-Attention-Based Class Alignment Network for Cross-Subject EEG Classification in a Heterogeneous Space.\",\"authors\":\"Sufan Ma, Dongxiao Zhang\",\"doi\":\"10.3390/s24217080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Domain adaptation (DA) techniques have emerged as a pivotal strategy in addressing the challenges of cross-subject classification. However, traditional DA methods are inherently limited by the assumption of a homogeneous space, requiring that the source and target domains share identical feature dimensions and label sets, which is often impractical in real-world applications. Therefore, effectively addressing the challenge of EEG classification under heterogeneous spaces has emerged as a crucial research topic.</p><p><strong>Methods: </strong>We present a comprehensive framework that addresses the challenges of heterogeneous spaces by implementing a cross-domain class alignment strategy. We innovatively construct a cross-encoder to effectively capture the intricate dependencies between data across domains. We also introduce a tailored class discriminator accompanied by a corresponding loss function. By optimizing the loss function, we facilitate the aggregation of features with corresponding classes between the source and target domains, while ensuring that features from non-corresponding classes are dispersed.</p><p><strong>Results: </strong>Extensive experiments were conducted on two publicly available EEG datasets. Compared to advanced methods that combine label alignment with transfer learning, our method demonstrated superior performance across five heterogeneous space scenarios. Notably, in four heterogeneous label space scenarios, our method outperformed the advanced methods by an average of 7.8%. Moreover, in complex scenarios involving both heterogeneous label spaces and heterogeneous feature spaces, our method outperformed the state-of-the-art methods by an average of 4.1%.</p><p><strong>Conclusions: </strong>This paper presents an efficient model for cross-subject EEG classification under heterogeneous spaces, which significantly addresses the challenges of EEG classification within heterogeneous spaces, thereby opening up new perspectives and avenues for research in related fields.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548574/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217080\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217080","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Cross-Attention-Based Class Alignment Network for Cross-Subject EEG Classification in a Heterogeneous Space.
Background: Domain adaptation (DA) techniques have emerged as a pivotal strategy in addressing the challenges of cross-subject classification. However, traditional DA methods are inherently limited by the assumption of a homogeneous space, requiring that the source and target domains share identical feature dimensions and label sets, which is often impractical in real-world applications. Therefore, effectively addressing the challenge of EEG classification under heterogeneous spaces has emerged as a crucial research topic.
Methods: We present a comprehensive framework that addresses the challenges of heterogeneous spaces by implementing a cross-domain class alignment strategy. We innovatively construct a cross-encoder to effectively capture the intricate dependencies between data across domains. We also introduce a tailored class discriminator accompanied by a corresponding loss function. By optimizing the loss function, we facilitate the aggregation of features with corresponding classes between the source and target domains, while ensuring that features from non-corresponding classes are dispersed.
Results: Extensive experiments were conducted on two publicly available EEG datasets. Compared to advanced methods that combine label alignment with transfer learning, our method demonstrated superior performance across five heterogeneous space scenarios. Notably, in four heterogeneous label space scenarios, our method outperformed the advanced methods by an average of 7.8%. Moreover, in complex scenarios involving both heterogeneous label spaces and heterogeneous feature spaces, our method outperformed the state-of-the-art methods by an average of 4.1%.
Conclusions: This paper presents an efficient model for cross-subject EEG classification under heterogeneous spaces, which significantly addresses the challenges of EEG classification within heterogeneous spaces, thereby opening up new perspectives and avenues for research in related fields.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.