通过委员会机制实现 5G 网络资源管理的联合强化学习框架。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217031
Jaewon Jeong, Joohyung Lee
{"title":"通过委员会机制实现 5G 网络资源管理的联合强化学习框架。","authors":"Jaewon Jeong, Joohyung Lee","doi":"10.3390/s24217031","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel decentralized federated reinforcement learning (DFRL) framework that integrates deep reinforcement learning (DRL) with decentralized federated learning (DFL). The DFRL framework boosts efficient virtual instance scaling in Mobile Edge Computing (MEC) environments for 5G core network automation. It enables multiple MECs to collaboratively optimize resource allocation without centralized data sharing. In this framework, DRL agents in each MEC make local scaling decisions and exchange model parameters with other MECs, rather than sharing raw data. To enhance robustness against malicious server attacks, we employ a committee mechanism that monitors the DFL process and ensures reliable aggregation of local gradients. Extensive simulations were conducted to evaluate the proposed framework, demonstrating its ability to maintain cost-effective resource usage while significantly reducing blocking rates across diverse traffic conditions. Furthermore, the framework demonstrated strong resilience against adversarial MEC nodes, ensuring reliable operation and efficient resource management. These results validate the framework's effectiveness in adaptive and efficient resource management, particularly in dynamic and varied network scenarios.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548485/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Federated Reinforcement Learning Framework via a Committee Mechanism for Resource Management in 5G Networks.\",\"authors\":\"Jaewon Jeong, Joohyung Lee\",\"doi\":\"10.3390/s24217031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a novel decentralized federated reinforcement learning (DFRL) framework that integrates deep reinforcement learning (DRL) with decentralized federated learning (DFL). The DFRL framework boosts efficient virtual instance scaling in Mobile Edge Computing (MEC) environments for 5G core network automation. It enables multiple MECs to collaboratively optimize resource allocation without centralized data sharing. In this framework, DRL agents in each MEC make local scaling decisions and exchange model parameters with other MECs, rather than sharing raw data. To enhance robustness against malicious server attacks, we employ a committee mechanism that monitors the DFL process and ensures reliable aggregation of local gradients. Extensive simulations were conducted to evaluate the proposed framework, demonstrating its ability to maintain cost-effective resource usage while significantly reducing blocking rates across diverse traffic conditions. Furthermore, the framework demonstrated strong resilience against adversarial MEC nodes, ensuring reliable operation and efficient resource management. These results validate the framework's effectiveness in adaptive and efficient resource management, particularly in dynamic and varied network scenarios.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548485/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217031\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217031","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的分散联合强化学习(DFRL)框架,该框架将深度强化学习(DRL)与分散联合学习(DFL)整合在一起。DFRL 框架促进了移动边缘计算(MEC)环境中虚拟实例的高效扩展,从而实现 5G 核心网络自动化。它使多个 MEC 能够在不集中共享数据的情况下协同优化资源分配。在该框架中,每个 MEC 中的 DRL 代理都会做出本地扩展决策,并与其他 MEC 交换模型参数,而不是共享原始数据。为了增强抵御恶意服务器攻击的能力,我们采用了一种委员会机制来监控 DFL 进程,并确保本地梯度的可靠聚合。为评估所提出的框架,我们进行了大量仿真,结果表明该框架能够在各种流量条件下保持经济高效的资源使用,同时显著降低阻塞率。此外,该框架还展示了强大的抗对抗性 MEC 节点的能力,确保了可靠的运行和高效的资源管理。这些结果验证了该框架在自适应和高效资源管理方面的有效性,尤其是在动态和多变的网络场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Federated Reinforcement Learning Framework via a Committee Mechanism for Resource Management in 5G Networks.

This paper proposes a novel decentralized federated reinforcement learning (DFRL) framework that integrates deep reinforcement learning (DRL) with decentralized federated learning (DFL). The DFRL framework boosts efficient virtual instance scaling in Mobile Edge Computing (MEC) environments for 5G core network automation. It enables multiple MECs to collaboratively optimize resource allocation without centralized data sharing. In this framework, DRL agents in each MEC make local scaling decisions and exchange model parameters with other MECs, rather than sharing raw data. To enhance robustness against malicious server attacks, we employ a committee mechanism that monitors the DFL process and ensures reliable aggregation of local gradients. Extensive simulations were conducted to evaluate the proposed framework, demonstrating its ability to maintain cost-effective resource usage while significantly reducing blocking rates across diverse traffic conditions. Furthermore, the framework demonstrated strong resilience against adversarial MEC nodes, ensuring reliable operation and efficient resource management. These results validate the framework's effectiveness in adaptive and efficient resource management, particularly in dynamic and varied network scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment. Optimizing the Agricultural Internet of Things (IoT) with Edge Computing and Low-Altitude Platform Stations. A Study of the Effect of Temperature on the Capacitance Characteristics of a Metal-μhemisphere Resonant Gyroscope. Evaluating Alternative Registration Planes in Imageless, Computer-Assisted Navigation Systems for Direct Anterior Total Hip Arthroplasty. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1