优化科威特的厨余厌氧发酵:利用人工神经网络的实验见解和经验建模。

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Waste Management & Research Pub Date : 2024-11-13 DOI:10.1177/0734242X241294247
Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid
{"title":"优化科威特的厨余厌氧发酵:利用人工神经网络的实验见解和经验建模。","authors":"Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid","doi":"10.1177/0734242X241294247","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (<i>R</i>²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241294247"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing food waste anaerobic digestion in Kuwait: Experimental insights and empirical modelling using artificial neural networks.\",\"authors\":\"Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid\",\"doi\":\"10.1177/0734242X241294247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (<i>R</i>²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.</p>\",\"PeriodicalId\":23671,\"journal\":{\"name\":\"Waste Management & Research\",\"volume\":\" \",\"pages\":\"734242X241294247\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management & Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0734242X241294247\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241294247","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次通过人工神经网络(ANN)建模和连续反应器实验相结合的方法,对科威特餐厨垃圾厌氧消化进行了调查,以优化甲烷生产。人工神经网络模型采用 8 个隐藏神经元,训练集、验证集和测试集按 70-20-10 的比例分配,平均平方误差值分别为 0.0056、0.0048 和 0.0059,决定系数 (R²) 分别为 0.9942、0.9986 和 0.9892。通过生物质类型、pH 值、有机负荷率 (OLR)、水力停留时间 (HRT)、温度和反应器容积这六个参数,预测了沼气中甲烷的百分比。为了验证 ANN 的结果,在不同温度(35°C、40°C、45°C、50°C 和 55°C)条件下进行了连续反应器实验,OLR 为 3 kg VS m-³ d-¹,HRT 为 20 天。实验表明,在中嗜酸性范围内甲烷产量最佳,ANN 预测值与 45°C 以下的实验数据非常吻合。然而,在更高温度下,特别是在超过 50°C 的嗜热条件下,出现了偏差。这项研究为科威特的废物变能源计划提供了新的见解,并强调了将计算模型与经验数据相结合以提高沼气生产工艺的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing food waste anaerobic digestion in Kuwait: Experimental insights and empirical modelling using artificial neural networks.

This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (R²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
期刊最新文献
Microplastics' impact on soil health and quality: Effect of incubation time and soil properties in soil fertility and pollution extent under the circular economy concept. A review on European sustainable practices in end-of-life vehicles management. Shifting perceptions of informal operators in the service and value chains: A retrospective of 40 years of observation and advocacy for informal recyclers and waste service providers, through the eyes of five global participant-researchers. Sustainable waste management approach towards efficient resource utilization. Developing WasteSAM: A novel approach for accurate construction waste image segmentation to facilitate efficient recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1