{"title":"通过孟德尔随机分析确定糖尿病视网膜病变的潜在药物靶点","authors":"Huan Liu, Feiyan Wang, Ziqing Hu, Jing Wei","doi":"10.1167/tvst.13.11.17","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to investigate the causal effect of plasma proteins on diabetic retinopathy (DR) risk and identify potential drug targets for this disease.</p><p><strong>Methods: </strong>Two-sample Mendelian randomization was performed to explore potential drug targets for DR. A total of 734 proteins were selected as instrumental variables. The Steiger filtering test and colocalization analysis were conducted to determine the causal direction and genetic pleiotropy. Plasma proteins from the decode study were used to validate the findings.</p><p><strong>Results: </strong>Eleven plasma proteins were associated with DR risk. Genetically predicted high levels of CCL3L1 (odds ratio [OR] = 0.582; 95% confidence interval [CI], 0.343-0.986; P = 0.044), PAM (OR = 0.782; 95% CI, 0.652-0.937; P = 0.008), GP1BA (OR = 0.793; 95% CI, 0.632-0.994; P = 0.044), GALNT16 (OR = 0.832; 95% CI, 0.727-0.952; P = 0.008), POGLUT1 (OR = 0.836; 95% CI = 0.703-0.995; P = 0.043), and DKK3 (OR = 0.859; 95% CI, 0.777-0.950; P = 0.003) have the protective effect on DR risk. Genetically predicted high levels of GFRA2 (OR = 1.104; 95% CI, 1.028-1.187; P = 0.007), PATE4 (OR = 1.405; 95% CI, 1.060-1.860; P = 0.018), GSTA1 (OR = 1.464; 95% CI, 1.163-1.842; P = 0.001), SIRPG (OR = 1.600, 95% CI, 1.244-2.057; P = 2.51E-04), and MAPK13 (OR = 1.731; 95% CI, 1.233-2.431; P = 0.002) were associated with an increased risk of DR. However, the colocalization analysis results suggested that SIRPG and GP1BA have a shared causal variant with DR.</p><p><strong>Conclusions: </strong>CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 were associated with DR risk and were identified as potential drug targets for DR.</p><p><strong>Translational relevance: </strong>The present study has highlighted the role of CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 in the development of DR.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"13 11","pages":"17"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential Drug Targets for Diabetic Retinopathy Identified Through Mendelian Randomization Analysis.\",\"authors\":\"Huan Liu, Feiyan Wang, Ziqing Hu, Jing Wei\",\"doi\":\"10.1167/tvst.13.11.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to investigate the causal effect of plasma proteins on diabetic retinopathy (DR) risk and identify potential drug targets for this disease.</p><p><strong>Methods: </strong>Two-sample Mendelian randomization was performed to explore potential drug targets for DR. A total of 734 proteins were selected as instrumental variables. The Steiger filtering test and colocalization analysis were conducted to determine the causal direction and genetic pleiotropy. Plasma proteins from the decode study were used to validate the findings.</p><p><strong>Results: </strong>Eleven plasma proteins were associated with DR risk. Genetically predicted high levels of CCL3L1 (odds ratio [OR] = 0.582; 95% confidence interval [CI], 0.343-0.986; P = 0.044), PAM (OR = 0.782; 95% CI, 0.652-0.937; P = 0.008), GP1BA (OR = 0.793; 95% CI, 0.632-0.994; P = 0.044), GALNT16 (OR = 0.832; 95% CI, 0.727-0.952; P = 0.008), POGLUT1 (OR = 0.836; 95% CI = 0.703-0.995; P = 0.043), and DKK3 (OR = 0.859; 95% CI, 0.777-0.950; P = 0.003) have the protective effect on DR risk. Genetically predicted high levels of GFRA2 (OR = 1.104; 95% CI, 1.028-1.187; P = 0.007), PATE4 (OR = 1.405; 95% CI, 1.060-1.860; P = 0.018), GSTA1 (OR = 1.464; 95% CI, 1.163-1.842; P = 0.001), SIRPG (OR = 1.600, 95% CI, 1.244-2.057; P = 2.51E-04), and MAPK13 (OR = 1.731; 95% CI, 1.233-2.431; P = 0.002) were associated with an increased risk of DR. However, the colocalization analysis results suggested that SIRPG and GP1BA have a shared causal variant with DR.</p><p><strong>Conclusions: </strong>CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 were associated with DR risk and were identified as potential drug targets for DR.</p><p><strong>Translational relevance: </strong>The present study has highlighted the role of CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 in the development of DR.</p>\",\"PeriodicalId\":23322,\"journal\":{\"name\":\"Translational Vision Science & Technology\",\"volume\":\"13 11\",\"pages\":\"17\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Vision Science & Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/tvst.13.11.17\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.13.11.17","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Potential Drug Targets for Diabetic Retinopathy Identified Through Mendelian Randomization Analysis.
Purpose: This study aimed to investigate the causal effect of plasma proteins on diabetic retinopathy (DR) risk and identify potential drug targets for this disease.
Methods: Two-sample Mendelian randomization was performed to explore potential drug targets for DR. A total of 734 proteins were selected as instrumental variables. The Steiger filtering test and colocalization analysis were conducted to determine the causal direction and genetic pleiotropy. Plasma proteins from the decode study were used to validate the findings.
Results: Eleven plasma proteins were associated with DR risk. Genetically predicted high levels of CCL3L1 (odds ratio [OR] = 0.582; 95% confidence interval [CI], 0.343-0.986; P = 0.044), PAM (OR = 0.782; 95% CI, 0.652-0.937; P = 0.008), GP1BA (OR = 0.793; 95% CI, 0.632-0.994; P = 0.044), GALNT16 (OR = 0.832; 95% CI, 0.727-0.952; P = 0.008), POGLUT1 (OR = 0.836; 95% CI = 0.703-0.995; P = 0.043), and DKK3 (OR = 0.859; 95% CI, 0.777-0.950; P = 0.003) have the protective effect on DR risk. Genetically predicted high levels of GFRA2 (OR = 1.104; 95% CI, 1.028-1.187; P = 0.007), PATE4 (OR = 1.405; 95% CI, 1.060-1.860; P = 0.018), GSTA1 (OR = 1.464; 95% CI, 1.163-1.842; P = 0.001), SIRPG (OR = 1.600, 95% CI, 1.244-2.057; P = 2.51E-04), and MAPK13 (OR = 1.731; 95% CI, 1.233-2.431; P = 0.002) were associated with an increased risk of DR. However, the colocalization analysis results suggested that SIRPG and GP1BA have a shared causal variant with DR.
Conclusions: CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 were associated with DR risk and were identified as potential drug targets for DR.
Translational relevance: The present study has highlighted the role of CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 in the development of DR.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.