Romain Rousseau, Pierre Grandjean, Nicolas Quaegebeur, Loïc Charlebois-Vachon, Philippe Micheau
{"title":"利用谐波声气动源产生宽带空中超声波。","authors":"Romain Rousseau, Pierre Grandjean, Nicolas Quaegebeur, Loïc Charlebois-Vachon, Philippe Micheau","doi":"10.1016/j.ultras.2024.107494","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with <span><math><mrow><mn>122</mn></mrow></math></span> slots to generate periodic sound. The level of sound pressure is measured as a function of distance (<span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> to <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m), the cage rotation (up to <span><math><mrow><mn>11</mn></mrow></math></span> krpm) and directivity (<span><math><mn>0</mn></math></span> to <span><math><mrow><mn>90</mn></mrow></math></span>°). For the fundamental frequency at <span><math><mrow><mn>22</mn></mrow></math></span> kHz, the maximum SPL of <span><math><mrow><mn>150</mn></mrow></math></span> dB (<span><math><mrow><mn>632</mn></mrow></math></span> Pa rms) is /measured at <span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> m, and decreases to <span><math><mrow><mn>122</mn></mrow></math></span> dB (<span><math><mrow><mn>35</mn></mrow></math></span> Pa rms) at <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m. At <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m, the second and third harmonics can generate a SPL equal or greater than <span><math><mrow><mn>115</mn></mrow></math></span> dB above <span><math><mrow><mn>22</mn></mrow></math></span> kHz and up to <span><math><mrow><mn>66</mn></mrow></math></span> kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"146 ","pages":"Article 107494"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of broadband airborne ultrasound using an Harmonic Acoustic Pneumatic Source\",\"authors\":\"Romain Rousseau, Pierre Grandjean, Nicolas Quaegebeur, Loïc Charlebois-Vachon, Philippe Micheau\",\"doi\":\"10.1016/j.ultras.2024.107494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with <span><math><mrow><mn>122</mn></mrow></math></span> slots to generate periodic sound. The level of sound pressure is measured as a function of distance (<span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> to <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m), the cage rotation (up to <span><math><mrow><mn>11</mn></mrow></math></span> krpm) and directivity (<span><math><mn>0</mn></math></span> to <span><math><mrow><mn>90</mn></mrow></math></span>°). For the fundamental frequency at <span><math><mrow><mn>22</mn></mrow></math></span> kHz, the maximum SPL of <span><math><mrow><mn>150</mn></mrow></math></span> dB (<span><math><mrow><mn>632</mn></mrow></math></span> Pa rms) is /measured at <span><math><mrow><mn>0</mn><mo>.</mo><mn>004</mn></mrow></math></span> m, and decreases to <span><math><mrow><mn>122</mn></mrow></math></span> dB (<span><math><mrow><mn>35</mn></mrow></math></span> Pa rms) at <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m. At <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> m, the second and third harmonics can generate a SPL equal or greater than <span><math><mrow><mn>115</mn></mrow></math></span> dB above <span><math><mrow><mn>22</mn></mrow></math></span> kHz and up to <span><math><mrow><mn>66</mn></mrow></math></span> kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"146 \",\"pages\":\"Article 107494\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002579\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002579","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种用于产生高声压级(SPL)宽带超声波的新型机载换能器。该概念基于谐波声学气动源(HAPS),它使用加压空气与由旋转笼组成的斩流器,旋转笼上的槽与特定的排气管相连。基频取决于槽的数量和笼子的旋转速度。HAPS 的分析模型与排气的数值模型相结合,用于预测辐射声压,并估算尺寸参数对声源产生的压力水平的影响。实验使用了两个笼子:一个带有一个槽,用于产生周期性脉冲;另一个带有 122 个槽,用于产生周期性声音。测量的声压级是距离(0.004 至 0.5 米)、笼子旋转(最高 11 千转/分)和指向性(0 至 90°)的函数。对于 22 kHz 的基频,在 0.004 m 处测得的最大声压级为 150 dB(632 Pa rms),在 0.5 m 处降至 122 dB(35 Pa rms)。实验结果与数值模型在声压级、指向性和轴内压力方面存在差异。
Generation of broadband airborne ultrasound using an Harmonic Acoustic Pneumatic Source
This paper presents a new type of airborne transducer for generating broadband ultrasound with a high Sound Pressure Level (SPL). The concept is based on the Harmonic Acoustic Pneumatic Source (HAPS) that uses pressurized air in conjunction with a flow chopper made up of a rotating cage with slots connected to a specific exhaust. The fundamental frequency depends on the number of slots and the rotation speed of the cage. An analytical model of the HAPS coupled with a numerical model of the exhaust is used to predict the radiated acoustic pressure and to estimate the influence of dimensional parameters on pressure level generated by the source. Experiments are conducted with two cages: one with one slot in order to generate pulses periodically and one with slots to generate periodic sound. The level of sound pressure is measured as a function of distance ( to m), the cage rotation (up to krpm) and directivity ( to °). For the fundamental frequency at kHz, the maximum SPL of dB ( Pa rms) is /measured at m, and decreases to dB ( Pa rms) at m. At m, the second and third harmonics can generate a SPL equal or greater than dB above kHz and up to kHz. Discrepancies between the experiments results and numerical model are observed in terms of SPL, directivity and in-axis pressure.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.