Venugopal Vangala, Yu-Chi Chen, Saketh S Dinavahi, Krishne Gowda, Nazir A Lone, Meenhard Herlyn, Joseph Drabick, Klaus Helm, Jiyue Zhu, Rogerio I Neves, Arun K Sharma, Arthur Berg, Marco Archetti, Shantu Amin, Todd D Schell, Gavin P Robertson
{"title":"肿瘤异质性决定了药物治疗细胞的生存动态,揭示了大小漂移的亚群。","authors":"Venugopal Vangala, Yu-Chi Chen, Saketh S Dinavahi, Krishne Gowda, Nazir A Lone, Meenhard Herlyn, Joseph Drabick, Klaus Helm, Jiyue Zhu, Rogerio I Neves, Arun K Sharma, Arthur Berg, Marco Archetti, Shantu Amin, Todd D Schell, Gavin P Robertson","doi":"10.1021/acsptsci.4c00453","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of this project was to demonstrate that subpopulations of cells in tumors can uniquely fluctuate in size in response to environmental conditions created during drug treatment, thereby acting as a dynamic \"rheostat\" to create a favorable tumor environment for growth. The cancer modeling used for these studies was subpopulations of melanoma cells existing in cultured and tumor systems that differed in aldehyde dehydrogenase (ALDH) activity. However, similar observations were found in other cancer types in addition to melanoma, making them applicable broadly across cancer. The approach was designed to show that either ALDH<sup>high</sup> and ALDH<sup>low</sup> subpopulations rapidly epigenetically transition between stem-cell-like high into nonstem-like low production states to create an environment during drug treatment that would enable optimal cellular proliferation and tumor expansion to facilitate drug resistance. The controlled experiments showed proportional changes in each cell population to reach an evolutionarily stable equilibrium mediated by the needed levels of ALDH enzyme activity. Mechanistically, cell population size changes served to functionally move the aldehyde and the resulting reactive oxygen species (ROS) levels to those compatible with optimal cellular proliferation with population fluctuations dependent on the levels of drug induced tumor stress. This is the first report documenting fluctuations in the sizes of cell populations in tumors to cooperatively assist in drug resistance development.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 11","pages":"3573-3584"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor Heterogeneity Shapes Survival Dynamics in Drug-Treated Cells, Revealing Size-Drifting Subpopulations.\",\"authors\":\"Venugopal Vangala, Yu-Chi Chen, Saketh S Dinavahi, Krishne Gowda, Nazir A Lone, Meenhard Herlyn, Joseph Drabick, Klaus Helm, Jiyue Zhu, Rogerio I Neves, Arun K Sharma, Arthur Berg, Marco Archetti, Shantu Amin, Todd D Schell, Gavin P Robertson\",\"doi\":\"10.1021/acsptsci.4c00453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The goal of this project was to demonstrate that subpopulations of cells in tumors can uniquely fluctuate in size in response to environmental conditions created during drug treatment, thereby acting as a dynamic \\\"rheostat\\\" to create a favorable tumor environment for growth. The cancer modeling used for these studies was subpopulations of melanoma cells existing in cultured and tumor systems that differed in aldehyde dehydrogenase (ALDH) activity. However, similar observations were found in other cancer types in addition to melanoma, making them applicable broadly across cancer. The approach was designed to show that either ALDH<sup>high</sup> and ALDH<sup>low</sup> subpopulations rapidly epigenetically transition between stem-cell-like high into nonstem-like low production states to create an environment during drug treatment that would enable optimal cellular proliferation and tumor expansion to facilitate drug resistance. The controlled experiments showed proportional changes in each cell population to reach an evolutionarily stable equilibrium mediated by the needed levels of ALDH enzyme activity. Mechanistically, cell population size changes served to functionally move the aldehyde and the resulting reactive oxygen species (ROS) levels to those compatible with optimal cellular proliferation with population fluctuations dependent on the levels of drug induced tumor stress. This is the first report documenting fluctuations in the sizes of cell populations in tumors to cooperatively assist in drug resistance development.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 11\",\"pages\":\"3573-3584\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The goal of this project was to demonstrate that subpopulations of cells in tumors can uniquely fluctuate in size in response to environmental conditions created during drug treatment, thereby acting as a dynamic "rheostat" to create a favorable tumor environment for growth. The cancer modeling used for these studies was subpopulations of melanoma cells existing in cultured and tumor systems that differed in aldehyde dehydrogenase (ALDH) activity. However, similar observations were found in other cancer types in addition to melanoma, making them applicable broadly across cancer. The approach was designed to show that either ALDHhigh and ALDHlow subpopulations rapidly epigenetically transition between stem-cell-like high into nonstem-like low production states to create an environment during drug treatment that would enable optimal cellular proliferation and tumor expansion to facilitate drug resistance. The controlled experiments showed proportional changes in each cell population to reach an evolutionarily stable equilibrium mediated by the needed levels of ALDH enzyme activity. Mechanistically, cell population size changes served to functionally move the aldehyde and the resulting reactive oxygen species (ROS) levels to those compatible with optimal cellular proliferation with population fluctuations dependent on the levels of drug induced tumor stress. This is the first report documenting fluctuations in the sizes of cell populations in tumors to cooperatively assist in drug resistance development.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.