酵母菌基因组数据库:基因组注释的进展、生化途径的扩展以及其他关键改进。

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Genetics Pub Date : 2024-11-12 DOI:10.1093/genetics/iyae185
Stacia R Engel, Suzi Aleksander, Robert S Nash, Edith D Wong, Shuai Weng, Stuart R Miyasato, Gavin Sherlock, J Michael Cherry
{"title":"酵母菌基因组数据库:基因组注释的进展、生化途径的扩展以及其他关键改进。","authors":"Stacia R Engel, Suzi Aleksander, Robert S Nash, Edith D Wong, Shuai Weng, Stuart R Miyasato, Gavin Sherlock, J Michael Cherry","doi":"10.1093/genetics/iyae185","DOIUrl":null,"url":null,"abstract":"<p><p>Budding yeast (Saccharomyces cerevisiae) is the most extensively characterized eukaryotic model organism and has long been used to gain insight into the fundamentals of genetics, cellular biology, and the functions of specific genes and proteins. The Saccharomyces Genome Database (SGD) is a scientific resource that provides information about the genome and biology of S. cerevisiae. For more than 30 years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation for budding yeast along with search and analysis tools to explore these data. Here we describe recent updates at SGD, including the two most recent reference genome annotation updates, expanded biochemical pathways representation, changes to SGD search and data files, and other enhancements to the SGD website and user interface. These activities are part of our continuing effort to promote insights gained from yeast to enable the discovery of functional relationships between sequence and gene products in fungi and higher eukaryotes.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saccharomyces Genome Database: Advances in Genome Annotation, Expanded Biochemical Pathways, and Other Key Enhancements.\",\"authors\":\"Stacia R Engel, Suzi Aleksander, Robert S Nash, Edith D Wong, Shuai Weng, Stuart R Miyasato, Gavin Sherlock, J Michael Cherry\",\"doi\":\"10.1093/genetics/iyae185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Budding yeast (Saccharomyces cerevisiae) is the most extensively characterized eukaryotic model organism and has long been used to gain insight into the fundamentals of genetics, cellular biology, and the functions of specific genes and proteins. The Saccharomyces Genome Database (SGD) is a scientific resource that provides information about the genome and biology of S. cerevisiae. For more than 30 years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation for budding yeast along with search and analysis tools to explore these data. Here we describe recent updates at SGD, including the two most recent reference genome annotation updates, expanded biochemical pathways representation, changes to SGD search and data files, and other enhancements to the SGD website and user interface. These activities are part of our continuing effort to promote insights gained from yeast to enable the discovery of functional relationships between sequence and gene products in fungi and higher eukaryotes.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae185\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

芽殖酵母(Saccharomyces cerevisiae)是特征最丰富的真核模式生物,长期以来一直被用来深入研究遗传学基础、细胞生物学以及特定基因和蛋白质的功能。酵母菌基因组数据库(SGD)是提供酵母菌基因组和生物学信息的科学资源。30 多年来,SGD 一直在维护芽殖酵母的遗传命名法、染色体图谱和功能注释,以及探索这些数据的搜索和分析工具。在此,我们将介绍 SGD 的最新更新,包括两次最新的参考基因组注释更新、生化途径表述的扩展、SGD 搜索和数据文件的更改以及 SGD 网站和用户界面的其他改进。我们将继续努力推广从酵母中获得的洞察力,以便发现真菌和高等真核生物中序列与基因产物之间的功能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saccharomyces Genome Database: Advances in Genome Annotation, Expanded Biochemical Pathways, and Other Key Enhancements.

Budding yeast (Saccharomyces cerevisiae) is the most extensively characterized eukaryotic model organism and has long been used to gain insight into the fundamentals of genetics, cellular biology, and the functions of specific genes and proteins. The Saccharomyces Genome Database (SGD) is a scientific resource that provides information about the genome and biology of S. cerevisiae. For more than 30 years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation for budding yeast along with search and analysis tools to explore these data. Here we describe recent updates at SGD, including the two most recent reference genome annotation updates, expanded biochemical pathways representation, changes to SGD search and data files, and other enhancements to the SGD website and user interface. These activities are part of our continuing effort to promote insights gained from yeast to enable the discovery of functional relationships between sequence and gene products in fungi and higher eukaryotes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
A modular system to label endogenous presynaptic proteins using split fluorophores in C. elegans. Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast. CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans. Correction to: A review of multimodal deep learning methods for genomic-enabled prediction in plant breeding. Allele ages provide limited information about the strength of negative selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1